首页> 外文期刊>Computer Communications >Modeling online social network users' profile attribute disclosure behavior from a game theoretic perspective
【24h】

Modeling online social network users' profile attribute disclosure behavior from a game theoretic perspective

机译:从博弈论的角度对在线社交网络用户的个人资料属性披露行为进行建模

获取原文
获取原文并翻译 | 示例

摘要

Privacy settings are a crucial part of any online social network as users are confronted with determining which and how many profile attributes to disclose. Revealing more attributes increases users' chances of finding friends and yet leaves users more vulnerable to dangers such as identity theft. In this paper, we consider the problem of finding the optimal strategy for the disclosure of user attributes in social networks from a game-theoretic perspective. We model the privacy settings' dynamics of social networks with three game-theoretic approaches. In a two-user game, each user selects an ideal number of attributes to disclose to each other according to a utility function. We extend this model with a basic evolutionary game to observe how much of their profiles users are comfortable with revealing, and how this changes over time. We then consider a weighted evolutionary game to investigate the influence of attribute importance and the network topology in selecting privacy settings. The two-user game results show how one user's privacy settings are influenced by the settings of another user. The basic evolutionary game results show that the higher the motivation to reveal attributes, the longer users take to stabilize their privacy settings. Results from the weighted evolutionary game show that users are more likely to reveal their most important attributes than their least important attributes regardless of the risk. Results also show that the network topology has a considerable effect on the privacy in a risk-included environment but limited effect in a risk-free environment. Motivation and risk are identified as important factors in determining how efficiently stability of privacy settings is achieved and what settings users will adopt given different parameters. Additionally, the privacy settings are affected by the network topology and the importance users attach to specific attributes. Our models indicate that users of social networks eventually adopt profile settings that provide the highest possible privacy if there is any risk, despite how high the motivation to reveal attributes is. The provided models and the gained results are particularly important to social network designers and providers because they enable us to understand the influence of different factors on users' privacy choices.
机译:隐私设置是任何在线社交网络的重要组成部分,因为用户面临着确定要公开哪些和多少个人资料属性的问题。揭示更多属性会增加用户找到朋友的机会,但会使用户更容易受到身份盗窃等危险的影响。在本文中,我们考虑从博弈论的角度寻找在社交网络中公开用户属性的最佳策略的问题。我们使用三种博弈论方法对社交网络的隐私设置动态进行建模。在两个用户的游戏中,每个用户都根据实用程序功能选择一个理想数量的属性公开给彼此。我们通过基本的进化游戏扩展了该模型,以观察用户有多少个人资料适合显示,以及随着时间的变化。然后,我们考虑使用加权进化博弈来研究属性重要性和网络拓扑在选择隐私设置中的影响。两用户游戏结果显示了一个用户的隐私设置如何受到另一用户设置的影响。基本的进化游戏结果表明,揭示属性的动机越高,用户花费越长时间来稳定其隐私设置。加权进化博弈的结果表明,与风险无关,用户比其最不重要的属性更有可能显示其最重要的属性。结果还表明,网络拓扑在包括风险的环境中对隐私的影响很大,但在无风险的环境中影响有限。在确定如何有效地实现隐私设置的稳定性以及用户在给定不同参数的情况下将采用哪些设置时,动机和风险被视为重要因素。此外,隐私设置还受网络拓扑的影响,并且用户重视特定属性的重要性。我们的模型表明,社交网络的用户最终会采用个人资料设置,即使存在任何风险,尽管存在很大的动机,但如果有任何风险,它们都可以提供最高的隐私。所提供的模型和获得的结果对社交网络设计人员和提供者特别重要,因为它们使我们能够了解不同因素对用户隐私选择的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号