首页> 外文期刊>Computer architecture news >BlueDBM: An Appliance for Big Data Analytics
【24h】

BlueDBM: An Appliance for Big Data Analytics

机译:BlueDBM:大数据分析设备

获取原文
获取原文并翻译 | 示例

摘要

Complex data queries, because of their need for random accesses, have proven to be slow unless all the data can be accommodated in DRAM. There are many domains, such as genomics, geological data and daily twitter feeds where the datasets of interest are STB to 20 TB. For such a dataset, one would need a cluster with 100 servers, each with 128GB to 256GBs of DRAM, to accommodate all the data in DRAM. On the other hand, such datasets could be stored easily in the flash memory of a rack-sized cluster. Flash storage has much better random access performance than hard disks, which makes it desirable for analytics workloads. In this paper we present BlueDBM, a new system architecture which has flash-based storage with in-store processing capability and a low-latency high-throughput inter-controller network. We show that BlueDBM outperforms a flash-based system without these features by a factor of 10 for some important applications. While the performance of a ram-cloud system falls sharply even if only 5%~10% of the references are to the secondary storage, this sharp performance degradation is not an issue in BlueDBM. BlueDBM presents an attractive point in the cost-performance trade-off for Big Data analytics.
机译:复杂数据查询由于需要随机访问而被证明是缓慢的,除非所有数据都可以容纳在DRAM中。有许多领域,例如基因组学,地质数据和每日Twitter提要,其中感兴趣的数据集为STB至20 TB。对于这样的数据集,将需要一个包含100个服务器的群集,每个服务器具有128GB至256GB的DRAM,以容纳DRAM中的所有数据。另一方面,此类数据集可以轻松存储在机架大小的集群的闪存中。闪存的随机访问性能比硬盘好得多,这使其成为分析工作负载的理想选择。在本文中,我们介绍了BlueDBM,它是一种新的系统架构,该架构具有基于闪存的存储,具有店内处理能力和低延迟的高吞吐量内部控制器网络。我们证明,对于某些重要应用程序,BlueDBM优于不具有这些功能的基于Flash的系统的性能提高了10倍。尽管仅5%〜10%的引用是针对辅助存储的,但ram-cloud系统的性能却急剧下降,但是在BlueDBM中,性能的急剧下降并不是问题。 BlueDBM在大数据分析的成本-性能折衷方面提出了一个有吸引力的观点。

著录项

  • 来源
    《Computer architecture news》 |2015年第3期|1-13|共13页
  • 作者单位

    Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology;

    Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology;

    Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology;

    Department of Electrical Engineering and Computer Science Quanta Research Cambridge;

    Department of Electrical Engineering and Computer Science Quanta Research Cambridge;

    Department of Electrical Engineering and Computer Science Quanta Research Cambridge;

    Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology;

    Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号