首页> 外文期刊>Computer Animation and Virtual Worlds >A time-based global path planning strategy for crowd navigation
【24h】

A time-based global path planning strategy for crowd navigation

机译:基于时间的人群导航全局路径规划策略

获取原文
获取原文并翻译 | 示例

摘要

In a competent crowd navigation system, it is very important for the agents in the system to plan their movements being aware of the other agents. In this study, we propose the use of machine learning methods to create time-based global path plans by utilizing the information as to when and where the other agents would be at a future time. The application of a machine learning method in the traditional manner for the global path planning problem is not a straightforward task due to the complexity of data collection; therefore, this study proposes a novel method to apply machine learning methods for global path planning. This enables us to create a context-free model. We organize experiments to compare our method to a recent and competitive approach that is referred to as the potential-based method (PBM). We employed three different machine learning methods, namely, artificial neural networks, polynomial regression, and support vector regression. The results of the mass scenario tests and a corridor scenario indicate that the versions with polynomial regression and support vector regression outperform the PBM. This encourages further investigations on the use of machine learning methods for global path planning in crowd navigation.
机译:在称职的人群导航系统中,对于系统中的代理而言,计划其移动时要意识到其他代理是非常重要的。在这项研究中,我们建议使用机器学习方法,通过利用有关其他代理在将来的时间和地点的信息来创建基于时间的全局路径计划。由于数据收集的复杂性,以传统方式将机器学习方法应用于全局路径规划问题并不是一项简单的任务。因此,本研究提出了一种将机器学习方法应用于全局路径规划的新颖方法。这使我们能够创建无上下文模型。我们组织实验以将我们的方法与一种最新的竞争方法(称为基于潜力的方法(PBM))进行比较。我们采用了三种不同的机器学习方法,即人工神经网络,多项式回归和支持向量回归。大规模方案测试和走廊方案的结果表明,具有多项式回归和支持向量回归的版本优于PBM。这鼓励进一步研究在人群导航中使用机器学习方法进行全局路径规划。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号