首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Efficient Extraction of Target Users for Package Promotion in Big Social Networks
【24h】

Efficient Extraction of Target Users for Package Promotion in Big Social Networks

机译:大型社交网络中促进目标用户的高效提取

获取原文
获取原文并翻译 | 示例

摘要

Package promotion (or product bundling and bundle promotion) is widely adopted as an effective marketing strategy to increase sales, but the social tightness of the users significantly influences their willingness to purchase certain products. However, addressing these two factors simultaneously is not a trivial task because it is critical to properly choose a set of socially tight target users to encourage them to buy the products together (social tightness factor), and the selected users should have high preference for the package of products (preference factor). To address the aforementioned challenges, in this article, we study the research problem of promoting a package of products to a set of closely related friends. We formulate a new research problem, named package-oriented group identification (PGI), which can obtain a set of t socially tight users (i.e., inducing more than k edges) who have the maximum preference for a package of items. We prove that the proposed PGI problem is NP-hard, and we develop a polynomial-time algorithm named incremental solution construction with redundancy and infeasibility avoidance for PGI (ISCP) that can effectively and efficiently obtain a good solution to the PGI problem. We compare the performance of ISCP with four other baselines on a large-scale product copurchasing data set with more than 500 k products and 1.7 M copurchasing relationships. The results show that our proposed ISCP algorithm outperforms the other baselines in terms of solution quality and efficiency.
机译:包促销(或产品捆绑和捆绑促销)被广泛采用作为增加销售的有效营销策略,但用户的社会紧张性显着影响他们购买某些产品的意愿。但是,同时解决这两个因素并不是一个简单的任务,因为正确选择一套社会紧密的目标用户至关重要,以鼓励他们一起购买产品(社会紧张因素),并且所选用户应该高度优先产品包(优先系数)。为了解决上述挑战,在本文中,我们研究了向一系列密切相关的朋友推广产品包的研究问题。我们制定了一个新的研究问题,命名为面向包裹的组识别(PGI),它可以获得一组关于具有最大偏好对一揽子物品的最大偏好的T组的T组(即,诱导k边缘)。我们证明所提出的PGI问题是NP-Hard,我们开发了一个名为增量解决方案结构的多项式算法,其PGI(ISCP)具有冗余和不可缺乏的避免,可以有效,有效地获得PGI问题的良好解决方案。我们将ISCP与四个其他基线的性能进行比较,在大型产品Copurchasing数据集中,拥有超过500 k产品和1.7米的Copurchasing的关系。结果表明,我们所提出的ISCP算法在解决方案质量和效率方面优于其他基线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号