首页> 外文期刊>ACM transactions on intelligent systems >Exploring Communication Behaviors of Users to Target Potential Users in Mobile Social Networks
【24h】

Exploring Communication Behaviors of Users to Target Potential Users in Mobile Social Networks

机译:探索用户在移动社交网络中针对潜在用户的通信行为

获取原文
获取原文并翻译 | 示例

摘要

In mobile communication services, users can communicate with each other over different telecommunication carriers. For telecom operators, how to acquire and retain users is a significant and practical task. Note that telecom operators only have their own customer profiles. For the users from other telecom operators, their information is sparse. Thus, given a set of communication logs, the main theme of our work is to identify the potential users who will possibly join the target services in the near future. Since only a limited amount of information is available, one challenging issue is how to extract features from the communication logs. In this article, we propose a Communication-Based Feature Generation (CBFG) framework that extracts features and builds models to infer the potential users. Explicitly, we construct a heterogeneous information network from the communication logs of users. Then, we extract the explicit features, which refer to those calling features of users, from the potential users' interaction behaviors in the heterogeneous information network. Moreover, from the calling behaviors of users, one could extract the possible community structures of users. Based on the community structures, we further extract the implicit features of users. In light of both explicit and implicit features, we propose an information-gain-based method to select the effective features. According to the features selected, we utilize three popular classifiers (i.e., AdaBoost, Random Forest, and SVM) to build models to target the potential users. In addition, we have designed a sampling approach to extract training data for classifiers. To evaluate our methods, we have conducted experiments on a real dataset. The results of our experiments show that the features extracted by our proposed method can be effective for targeting the potential users.
机译:在移动通信服务中,用户可以通过不同的电信运营商相互通信。对于电信运营商而言,如何获取和保留用户是一项重大而实际的任务。请注意,电信运营商只有自己的客户资料。对于其他电信运营商的用户,他们的信息很少。因此,给定一组通信日志,我们工作的主要主题是确定在不久的将来可能加入目标服务的潜在用户。由于仅可获得有限的信息,因此一个具有挑战性的问题是如何从通信日志中提取特征。在本文中,我们提出了一种基于通信的特征生成(CBFG)框架,该框架可提取特征并构建模型以推断潜在用户。明确地说,我们从用户的通信日志中构建了一个异构信息网络。然后,我们从异构信息网络中潜在用户的交互行为中提取涉及用户调用特征的显式特征。而且,从用户的呼叫行为中,可以提取出用户可能的社区结构。基于社区结构,我们进一步提取了用户的隐含特征。鉴于显式和隐式特征,我们提出了一种基于信息增益的方法来选择有效特征。根据所选功能,我们利用三种流行的分类器(即AdaBoost,Random Forest和SVM)来构建针对潜在用户的模型。此外,我们设计了一种采样方法来提取分类器的训练数据。为了评估我们的方法,我们在真实数据集上进行了实验。我们的实验结果表明,我们提出的方法提取的特征可以有效地针对潜在用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号