首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Discovering Density-Based Clustering Structures Using Neighborhood Distance Entropy Consistency
【24h】

Discovering Density-Based Clustering Structures Using Neighborhood Distance Entropy Consistency

机译:使用邻域距离熵一致性发现基于密度的聚类结构

获取原文
获取原文并翻译 | 示例

摘要

Traditional clustering algorithms model the clustering problem as an optimization task, in which the objective is defined based on minimizing specific metrics. These algorithms are limited to find clusters with convex polytopes. In contrast, density-based clustering algorithms aim at overcoming this limitation and try to partition data objects into meaningful groups that have relatively high density separated by low-density regions. This work describes and evaluates a new density-based clustering algorithm, called neighborhood distance entropy consistency (NDEC), which is able to not only detect clusters of arbitrary size, shape, and density, but also identify outliers. To this end, both local and global densities are considered simultaneously to accurately discover the intrinsic clustering structure. In addition, the consistency of neighborhood distance entropy is used as an important criterion to merge potential subclusters. Experiments on synthetic and real benchmark clustering data sets have demonstrated the efficiency and effectiveness of the NDEC method. Comparisons with k-means, DBSCAN, OPTICS, and density peaks clustering algorithms further show that NDEC can successfully discover natural clusters. Additionally, the utility of NDEC is demonstrated with its application on two real-world problems including brain white matter tracts segmentation using diffusion tensor imaging and characterizing motor unit potential trains extracted from electromyographic signals.
机译:传统聚类算法模型将聚类问题作为优化任务,其中基于最小化特定度量来定义目标。这些算法仅限于找到具有凸多台的簇。相比之下,基于密度的聚类算法旨在克服这种限制,并尝试将数据对象分配成有意义的群体,其具有由低密度区域分离的相对高密度的有意义的群体。该工作描述并评估了一种新的基于密度的聚类算法,称为邻域距离熵一致性(NDEC),其不仅能够检测任意大小,形状和密度的集群,而且还可以识别异常值。为此,同时考虑本地和全局密度,以准确地发现内在聚类结构。此外,邻距离熵的一致性用作合并潜在子平整板的重要标准。合成和实际基准集群数据集的实验表明了NDEC方法的效率和有效性。与K-Means,DBSCAN,光学和密度峰集聚类算法的比较进一步表明NDEC可以成功发现自然集群。另外,NDEC的效用是在两个真实世界问题上的应用,包括使用扩散张量成像和从电拍摄信号提取的电动机单元潜在列车的脑白质子散射分割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号