首页> 外文期刊>Fuzzy sets and systems >Robustness of density-based clustering methods with various neighborhood relations
【24h】

Robustness of density-based clustering methods with various neighborhood relations

机译:具有各种邻域关系的基于密度的聚类方法的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Cluster analysis is one of the most crucial techniques in statistical data analysis. Among the clustering methods, density-based methods have great importance due to their ability to recognize clusters with arbitrary shape. In this paper, robustness of the clustering methods is handled. These methods use distance-based neighborhood relations between points. In particular, DBSCAN (density-based spatial clustering of applications with noise) algorithm and FN-DBSCAN (fuzzy neighborhood DBSCAN) algorithm are analyzed. FN-DBSCAN algorithm uses fuzzy neighborhood relation whereas DBSCAN uses crisp neighborhood relation. The main characteristic of the FN-DBSCAN algorithm is that it combines the speed of the DBSCAN and robustness of the NRFJP (noise robust fuzzy joint points) algorithms. It is observed that the FN-DBSCAN algorithm is more robust than the DBSCAN algorithm to datasets with various shapes and densities.
机译:聚类分析是统计数据分析中最关键的技术之一。在聚类方法中,基于密度的方法具有识别任意形状的聚类的能力,因此具有非常重要的意义。在本文中,处理了聚类方法的鲁棒性。这些方法使用点之间基于距离的邻域关系。特别是,分析了DBSCAN(基于噪声的应用程序的基于空间的空间聚类)算法和FN-DBSCAN(模糊邻域DBSCAN)算法。 FN-DBSCAN算法使用模糊邻域关系,而DBSCAN算法使用明晰邻域关系。 FN-DBSCAN算法的主要特征是它结合了DBSCAN的速度和NRFJP(噪声鲁棒模糊联合点)算法的鲁棒性。可以看出,对于各种形状和密度的数据集,FN-DBSCAN算法比DBSCAN算法更健壮。

著录项

  • 来源
    《Fuzzy sets and systems》 |2009年第24期|3601-3615|共15页
  • 作者单位

    Department of Statistics, Faculty of Science and Arts, Dokuz Eylul University, Tinaztepe Campus, 35160 Buca, Izmir, Turkey;

    Department of Computer Engineering, Izmir University, Gursel Aksel Blv. No. 14, 35350 Uckuyuiar, Izmir, Turkey;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    clustering; fuzzy neighborhood; FJP; DBSCAN; FN-DBSCAN;

    机译:集群模糊邻域FJP;DBSCAN;FN数据库扫描;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号