首页> 外文期刊>Computational Social Systems, IEEE Transactions on >Combat Information Overload Problem in Social Networks With Intelligent Information-Sharing and Response Mechanisms
【24h】

Combat Information Overload Problem in Social Networks With Intelligent Information-Sharing and Response Mechanisms

机译:智能信息共享和响应机制的社交网络中的作战信息过载问题

获取原文
获取原文并翻译 | 示例

摘要

Increasingly popular social networks have become fast-growing platforms for information sharing, job searching, and product marketing. Information propagates rapidly in social network and may reach a very large population within a very short period of time. An excessive amount of information shared in social networks not only costs computational and communicational resources but also causes the information overload problem, which results in the delay and difficulty of making decisions and may lead to physical and psychological strain. We used computer technologies to attack this information overload problem. First, we developed automatic decision-making mechanisms to help each individual effectively share information. Second, we built a simulation test bed and proposed an evaluation matrix and then conducted an experimental evaluation of six different information-sharing strategies in terms of interest degrees, reachability, appreciation degrees, and communication cost. We also implemented two intelligent response mechanisms. The first one allows users to order information pieces according to the learned ratings of the information sources. The second mechanism dynamically adjusts the network structure based on machine-learning results. The simulation results show that such mechanisms would be very useful to motivate social-network users to adopt more selective information-sharing strategies.
机译:越来越受欢迎的社交网络已成为信息共享,求职和产品营销的快速增长平台。信息在社交网络中快速传播,可以在很短的时间内达到非常大的人口。社交网络中共享的过度信息不仅成本计算和常规资源,而且还导致信息过载问题,这导致延迟和难以做出决策,并可能导致身体和心理应变。我们使用计算机技术攻击此信息过载问题。首先,我们开发了自动决策机制,帮助每个人有效地共享信息。其次,我们建立了一个模拟试验台并提出了评估矩阵,然后在感兴趣程度,可达性,升值度和沟通成本方面进行了六种不同的信息共享策略的实验评估。我们还实施了两个智能响应机制。第一个允许用户根据信息源的评级评级订购信息。第二机制根据机器学习结果动态调整网络结构。仿真结果表明,这种机制对于激励社交网络用户采用更具选择性信息共享策略,这是非常有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号