首页> 外文期刊>Computational Optimization and Applications >A reduced Hessian SQP method for inequality constrained optimization
【24h】

A reduced Hessian SQP method for inequality constrained optimization

机译:不等式约束优化的简化Hessian SQP方法

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a reduced Hessian method for solving inequality constrained optimization problems. At each iteration, the proposed method solves a quadratic subproblem which is always feasible by introducing a slack variable to generate a search direction and then computes the steplength by adopting a standard line search along the direction through employing the l penalty function. And a new update criterion is proposed to generate the quasi-Newton matrices, whose dimensions may be variable, approximating the reduced Hessian of the Lagrangian. The global convergence is established under mild conditions. Moreover, local R-linear and superlinear convergence are shown under certain conditions.
机译:本文提出了一种求解不等式约束优化问题的简化Hessian方法。在每次迭代中,提出的方法通过引入松弛变量来生成搜索方向来解决二次子问题,该问题总是可行的,然后通过使用l 惩罚功能。提出了一种新的更新准则来生成准牛顿矩阵,该矩阵的维数可能是可变的,近似于拉格朗日的约简Hessian。全球融合是在温和条件下建立的。此外,在某些条件下还显示了局部R线性和超线性收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号