首页> 外文期刊>Computational Optimization and Applications >Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods
【24h】

Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods

机译:统一框架中单调变分不等式的近似类收缩方法I:有效的四联体和主要方法

获取原文

摘要

Approximate proximal point algorithms (abbreviated as APPAs) are classical approaches for convex optimization problems and monotone variational inequalities. To solve the subproblems of these algorithms, the projection method takes the iteration in form of u k+1=P Ω [u k −α k d k ]. Interestingly, many of them can be paired such that [(u)tilde]k = PvarOmega[uk - bkF(vk)] = PvarOmega[[(u)tilde]k - (d2k - G d1k)]tilde{u}^{k} = P_{varOmega}[u^{k} - beta_{k}F(v^{k})] = P_{varOmega}[tilde {u}^{k} - (d_{2}^{k} - G d_{1}^{k})], where inf {β k }>0 and G is a symmetric positive definite matrix. In other words, this projection equation offers a pair of directions, i.e., d1kd_{1}^{k} and d2kd_{2}^{k} for each step. In this paper, for various APPAs we present a unified framework involving the above equations. Unified characterization is investigated for the contraction and convergence properties under the framework. This shows some essential views behind various outlooks. To study and pair various APPAs for different types of variational inequalities, we thus construct the above equations in different expressions according to the framework. Based on our constructed frameworks, it is interesting to see that, by choosing one of the directions (d1kd_{1}^{k} and d2kd_{2}^{k}) those studied proximal-like methods always utilize the unit step size namely α k ≡1.
机译:近似近点算法(缩写为APPA)是凸优化问题和单调变分不等式的经典方法。为了解决这些算法的子问题,投影方法采用u k + 1 = P Ω [u k k d k ]。有趣的是,它们中的许多可以配对,使得[(u)tilde] k = P varOmega [u k -b k F(v k )] = P varOmega [[(u)tilde] k -(d 2 < / sub> k -G d 1 k )] tilde {u} ^ {k} = P_ {varOmega} [u ^ {k }-beta_ {k} F(v ^ {k})] = P_ {varOmega} [波浪号{u} ^ {k}-(d_ {2} ^ {k}-G d_ {1} ^ {k}) ],其中inf {β k }> 0且G是对称正定矩阵。换句话说,该投影方程式提供了一对方向,即d 1 k d_ {1} ^ {k}和d 2 每个步骤 k d_ {2} ^ {k}。在本文中,对于各种APPA,我们提出了一个包含以上方程的统一框架。研究了框架下的收缩和收敛特性的统一表征。这显示了各种观点背后的一些基本观点。为了研究和配对用于不同类型变分不等式的各种APPA,我们根据框架以不同的表达式构造上述方程。根据我们构建的框架,有趣的是,通过选择方向(d 1 k d_ {1} ^ {k}和d 2 k d_ {2} ^ {k}),那些研究过的近端方法总是利用单位步长,即α k ≡1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号