首页> 外文期刊>Computational methods and function theory >Subnormality of Weighted Shifts Associated to Composition Operators
【24h】

Subnormality of Weighted Shifts Associated to Composition Operators

机译:与组成操作员相关的加权移位的亚型

获取原文
获取原文并翻译 | 示例

摘要

Let phi be a linear fractional transformation mapping the unit disk D into itself and fixing 1, and let C phi be the usual composition operator induced by phi on the Hardy space H2(D). For a point z of D, the subspace generated by the reproducing kernels k phi n(z) (n=0,1,...) arising from iterates of z under phi is invariant for the adjoint C phi. On this subspace, we show that C phi is similar to a weighted shift, and the subnormality and hyponormality of the shift or their lack (which, surprisingly, coincide) are determined by z and the location of the other fixed point of phi in pleasing geometrical ways. These results are applied to semigroups of composition operators arising from linear fractional transformations.
机译:让PHI是将单位盘D映射到本身和固定1的线性分数转换,并使C PHI是耐寒空间H2(D)上PHI诱导的通常的组成操作员。对于D的点Z,由PHI下Z的迭代产生的再现内核K phi n(z)(n = 0,1,...)产生的子空间是伴随C phi的不变。在这个子空间上,我们表明C PHI类似于加权移位,并且偏移或缺乏(令人惊讶的是,令人惊讶地重合)的副数和低度正常(令人惊讶的是)由Z和PHI的其他固定点的位置确定几何方式。这些结果应用于线性分数转换产生的组成操作员的半群。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号