首页> 外文期刊>Computational methods and function theory >Subnormality of Weighted Shifts Associated to Composition Operators
【24h】

Subnormality of Weighted Shifts Associated to Composition Operators

机译:与合成算子相关的加权移位的次正规性

获取原文
获取原文并翻译 | 示例

摘要

Let phi be a linear fractional transformation mapping the unit disk D into itself and fixing 1, and let C phi be the usual composition operator induced by phi on the Hardy space H2(D). For a point z of D, the subspace generated by the reproducing kernels k phi n(z) (n=0,1,...) arising from iterates of z under phi is invariant for the adjoint C phi. On this subspace, we show that C phi is similar to a weighted shift, and the subnormality and hyponormality of the shift or their lack (which, surprisingly, coincide) are determined by z and the location of the other fixed point of phi in pleasing geometrical ways. These results are applied to semigroups of composition operators arising from linear fractional transformations.
机译:令phi为线性分数变换,将单位圆盘D映射到其自身并固定为1,令φ为phi在Hardy空间H2(D)上引起的通常的合成算子。对于D的点z,由phi下z的迭代产生的再生内核k phi n(z)(n = 0,1,...)生成的子空间对于伴随的C phi是不变的。在此子空间上,我们证明C phi与加权平移相似,并且平移的子正态性和伪正态性或它们的缺失(其令人惊讶的是一致的)由z和令人愉悦的其他phi固定点的位置确定几何方式。这些结果适用于线性分数转换产生的合成算子的半群。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号