首页> 外文期刊>Computational Mechanics >Mathematical foundations of the immersed finite element method
【24h】

Mathematical foundations of the immersed finite element method

机译:浸入式有限元法的数学基础

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an immersed solid system (ISS) method to efficiently treat the fluid–structure interaction (FSI) problems. Augmenting a fluid in the moving solid domain, we introduce a volumetric force to obtain the correct dynamics for both the fluid and the structure. We further define an Euler–Lagrange mapping to describe the motion of the immersed solid. A weak formulation (WF) is then constructed and shown to be equivalent to both the FSI and the ISS under certain regularity assumptions. The weak formulation (WF) may be computed numerically by an implicit algorithm with the finite element method, and the streamline upwind/Petrov–Galerkin method. Compared with the successful immersed boundary method (IBM) by Peskin and co-workers (J Comput Phys 160:705–719, 2000; Acta Numerica 11:479–517, 2002; SIAM J Sci Stat Comput 13(6):1361–1376, 1992) the ISS method applies to more general geometries with non-uniform grids and avoids the inaccuracy in approximating the Dirac delta function
机译:在本文中,我们提出了一种浸入式固体系统(ISS)方法来有效地处理流固耦合问题(FSI)。在移动的固体域中增加流体,我们引入体积力以获得流体和结构的正确动力学。我们进一步定义了一个Euler-Lagrange映射来描述沉浸固体的运动。然后构造一个弱公式(WF),并在某些规律性假设下显示为等效于FSI和ISS。弱公式(WF)可以通过有限元方法和简化的迎风/ Petrov-Galerkin方法通过隐式算法进行数值计算。与Peskin及其同事成功采用的浸入边界方法(IBM)相比(J Comput Phys 160:705–719,2000; Acta Numerica 11:479–517,2002; SIAM J Sci Stat Comput 13(6):1361– (1376,1992)ISS方法适用于具有非均匀网格的更一般的几何形状,避免了Dirac delta函数逼近的不精确性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号