首页> 外文期刊>Computational Mechanics >Hybrid-Trefftz six-node triangular finite element models for Helmholtz problem
【24h】

Hybrid-Trefftz six-node triangular finite element models for Helmholtz problem

机译:亥姆霍兹问题的混合-Trefftz六节点三角有限元模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, six-node hybrid-Trefftz triangular finite element models which can readily be incorporated into the standard finite element program framework in the form of additional element subroutines are devised via a hybrid variational principle for Helmholtz problem. In these elements, domain and boundary variables are independently assumed. The former is truncated from the Trefftz solution sets and the latter is obtained by the standard polynomial-based nodal interpolation. The equality of the two variables are enforced along the element boundary. Both the plane-wave solutions and Bessel solutions are employed to construct the domain variable. For full rankness of the element matrix, a minimal of six domain modes are required. By using local coordinates and directions, rank sufficient and invariant elements with six plane-wave modes, six Bessel solution modes and seven Bessel solution modes are devised. Numerical studies indicate that the hybrid-Trefftz elements are typically 50% less erroneous than their continuous Galerkin element counterpart.
机译:在本文中,通过混合变分原理设计了六节点混合-Trefftz三角形有限元模型,该模型可以容易地以附加元素子例程的形式并入标准有限元程序框架中。在这些元素中,域变量和边界变量是独立假设的。前者从Trefftz解集中被截断,后者通过基于标准多项式的节点插值获得。沿元素边界强制执行两个变量的相等性。平面波解和贝塞尔解都被用来构造域变量。对于元素矩阵的完整秩,最少需要六个域模式。通过使用局部坐标和方向,用六个平面波模式对足够和不变的元素进行排序,设计出六个贝塞尔求解模式和七个贝塞尔求解模式。数值研究表明,混合-Trefftz元素的错误率通常比连续的Galerkin元素低50%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号