首页> 外文期刊>Computational management science >Pricing and hedging GMWB in the Heston and in the Black-Scholes with stochastic interest rate models
【24h】

Pricing and hedging GMWB in the Heston and in the Black-Scholes with stochastic interest rate models

机译:带有随机利率模型​​的Heston和Black-Scholes中GMWB的定价和对冲

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we approach the problem of valuing a particular type of variable annuity called GMWB when advanced stochastic models are considered. As remarked by Yang and Dai (Insur Math Econ 52(2):231-242, 2013), and Dai et al. (Insur Math Econ 64:364-379, 2015), the Black-Scholes framework seems to be inappropriate for such a long maturity products. Also Chen et al. (Insur Math Econ 43(1):165-173, 2008) show that the price of GMWB variable annuities is very sensitive to the interest rate and the volatility parameters. We propose here to use a stochastic volatility model (the Heston model) and a Black-Scholes model with stochastic interest rate (the Black-Scholes Hull-White model). For this purpose, we consider four numerical methods: a hybrid tree-finite difference method, a hybrid tree-Monte Carlo method, an ADI finite difference scheme and a Standard Monte Carlo method. These approaches are employed to determine the no-arbitrage fee for a popular version of the GMWB contract and to calculate the Greeks used in hedging. Both constant withdrawal and dynamic withdrawal strategies are considered. Numerical results are presented, which demonstrate the sensitivity of the no-arbitrage fee to economic and contractual assumptions as well as the different features of the proposed numerical methods.
机译:在本文中,我们探讨了在考虑高级随机模型时评估一种称为GMWB的特殊类型的可变年金的问题。正如Yang和Dai(Insur Math Econ 52(2):231-242,2013)和Dai等人所述。 (Insur Math Econ 64:364-379,2015),Black-Scholes框架似乎不适用于此类期限较长的产品。也陈等。 (Insur Math Econ 43(1):165-173,2008)表明GMWB可变年金的价格对利率和波动率参数非常敏感。我们在这里建议使用随机波动率模型(Heston模型)和具有随机利率的Black-Scholes模型(Black-Scholes Hull-White模型)。为此,我们考虑了四种数值方法:混合树-有限差分方法,混合树-蒙特卡洛方法,ADI有限差分方案和标准蒙特卡洛方法。使用这些方法来确定GMWB合同的流行版本的无套利费用,并计算用于对冲的希腊人。同时考虑了持续撤资和动态撤资策略。给出了数值结果,表明了无套利费用对经济和合同假设的敏感性以及所提出数值方法的不同特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号