首页> 外文期刊>Computational Intelligence >Machine learning approach to handle data-driven model for simulation and forecasting of the cone crusher output in the stone crushing plant
【24h】

Machine learning approach to handle data-driven model for simulation and forecasting of the cone crusher output in the stone crushing plant

机译:机器学习方法处理石油厂锥形破碎机仿真和预测数据驱动模型

获取原文
获取原文并翻译 | 示例

摘要

Grinding and crushing of stones and other particles are associated with various significant applications. Different sectors have continuously evolved in this area. In the crushing industry, plants function under strict conditions, many of which involve grinding materials. Therefore, various factors are responsible for how the crushers perform. This research investigated the ability of the adaptive neuro fuzzy inference system (ANFIS) to simulate the effects of throw, eccentric speed, closed side setting, and the size of the particle on crusher output. The developed simulation model was adjusted and authenticated alongside the experimental data of the investigated parameters. The model's performance was computed by the use of several prediction criteria skills. The results of the study indicated that the developed ANFIS model could simulate the Cone crusher output and give a dependable forecast of the cumulative weight fraction. The researchers resolved that the model fostered was a suitable instrument for the onsite cone crusher assessment.
机译:石材和其他颗粒的研磨和压碎与各种重要应用有关。在这方面,不同的部门持续发展。在破碎行业中,植物在严格的条件下功能,其中许多涉及磨料。因此,各种因素负责破碎机如何执行。本研究调查了自适应神经模糊推理系统(ANFIS)模拟抛掷,偏心,闭合侧设定效果以及破碎机输出上粒子尺寸的能力。根据研究参数的实验数据,调整和认证开发的仿真模型。通过使用多种预测标准技能来计算模型的性能。研究结果表明,开发的ANFIS模型可以模拟锥形破碎机输出并给出累积重量分数的可靠预测。研究人员解决了培养的模型是现场锥形破碎机评估的合适仪器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号