首页> 外文期刊>Computational Intelligence >MULTIOBJECTIVE OPTIMIZATION TECHNIQUES FOR SELECTING IMPORTANT METRICS IN THE DESIGN OF ENSEMBLE SYSTEMS
【24h】

MULTIOBJECTIVE OPTIMIZATION TECHNIQUES FOR SELECTING IMPORTANT METRICS IN THE DESIGN OF ENSEMBLE SYSTEMS

机译:封装系统设计中重要指标选择的多目标优化技术

获取原文
获取原文并翻译 | 示例

摘要

Ensemble systems are classification structures that apply a two-level decision-making process, in which the first level produces the outputs of the individual classifiers and the second level produces the output of the combination method (final output). Although ensemble systems have been proven to be efficient for pattern recognition tasks, its efficient design is not an easy task. This article investigates the influence of two diversity measures when used explicitly to guide the design of ensemble systems. These diversity measures were proposed recently, and they proved to be very interesting for the diversity-accuracy dilemma. To perform this investigation, we will use two well-known optimization techniques, genetic algorithms, and tabu search, in their mono-objective and multiobjective versions. As objectives of the optimization techniques, we use error rate and two diversity measures as well as all possible combinations of these three objectives. In this article, we aim to analyze which set of objectives can generate more accurate ensembles. In addition, we aim to analyze whether or not the diversity measures (good and bad diversities) have a positive effect in the design of ensemble systems, mainly if they can replace the error rate as an optimization objective without incurring significant losses in the accuracy level of the generated ensembles.
机译:集合系统是应用两级决策过程的分类结构,其中第一级生成各个分类器的输出,第二级生成组合方法的输出(最终输出)。尽管集成系统已被证明对模式识别任务有效,但高效的设计却并非易事。本文研究了两种多样性度量在明确用于指导集成系统设计时的影响。这些多样性措施是最近提出的,事实证明它们对于多样性准确性难题非常有趣。为了进行这项研究,我们将使用两种众所周知的优化技术,即遗传算法和禁忌搜索,分别采用单目标和多目标版本。作为优化技术的目标,我们使用错误率和两个分集度量以及这三个目标的所有可能组合。在本文中,我们旨在分析哪些目标集可以生成更准确的合奏。此外,我们的目的是分析多样性度量(好和差的多样性)是否对集成系统的设计产生积极影响,主要是如果它们可以代替错误率作为优化目标而不会在准确性水平上造成重大损失生成的乐团。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号