首页> 外文期刊>Expert Systems with Application >Filter-based optimization techniques for selection of feature subsets in ensemble systems
【24h】

Filter-based optimization techniques for selection of feature subsets in ensemble systems

机译:基于滤波器的优化技术,用于集成系统中特征子集的选择

获取原文
获取原文并翻译 | 示例

摘要

Feature selection methods select a subset of attributes (features) of a dataset and it is done based on a defined measure, eliminating the redundant and irrelevant ones. When a feature selection method is applied in a dataset, we aim to improve the quality of the dataset representation. For ensemble systems, feature selection techniques can supply different feature subsets for the individual components, reducing the redundancy that can exist among the features of an input pattern and to increase the diversity level of these systems. This paper proposes the application of three well-known optimization techniques (particle swarm optimization, ant-colony optimization and genetic algorithms), in both mono and bi-objective versions, to choose subsets of features for the individual components of ensembles. The feature selection process was based on two filter-based evaluation criteria that tried to capture the idea of diversity of individual classifiers and group diversity of an ensemble system. In this case, these optimization techniques try to maximize these diversities measures, either individually (mono-objective) or together (bi-objective). An empirical analysis was performed, where all ensemble systems were applied to 11 datasets and we compared both mono and bi-objective versions among each other and with a random subset procedure. Based on the empirical analysis, we will observe that PSO with a bi-objective function will be the most promising direction, when selecting attributes for individual components of ensemble systems.
机译:特征选择方法选择数据集的属性(特征)的子集,并根据定义的度量来完成,从而消除了多余和无关的属性。当在数据集中应用特征选择方法时,我们旨在提高数据集表示的质量。对于集成系统,特征选择技术可以为各个组件提供不同的特征子集,从而减少了输入模式的特征之间可能存在的冗余,并增加了这些系统的多样性。本文提出了单目标和双目标版本中三种著名的优化技术(粒子群优化,蚁群优化和遗传算法)的应用,以为合奏的各个组成部分选择特征子集。特征选择过程基于两个基于过滤器的评估标准,这些评估标准试图捕获单个分类器的多样性和整体系统的群体多样性的思想。在这种情况下,这些优化技术试图使这些多样性度量最大化,无论是单独(单目标)还是在一起(双目标)。进行了一项经验分析,其中将所有集成系统应用于11个数据集,并且我们使用随机子集程序将单目标版本和双目标版本进行了比较。基于经验分析,我们将发现,在为集成系统的各个组件选择属性时,具有双目标功能的PSO将是最有希望的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号