首页> 外文期刊>Computational Intelligence >Big data regression with parallel enhanced and convex incremental extreme learning machines
【24h】

Big data regression with parallel enhanced and convex incremental extreme learning machines

机译:使用并行增强和凸增量增量学习机进行大数据回归

获取原文
获取原文并翻译 | 示例

摘要

This work considers scalable incremental extreme learning machine (I-ELM) algorithms, which could be suitable for big data regression. During the training of I-ELMs, the hidden neurons are presented one by one, and the weights are based solely on simple direct summations, which can be most efficiently mapped on parallel environments. Existing incremental versions of ELMs are the I-ELM, enhanced incremental ELM (EI-ELM), and convex incremental ELM (CI-ELM). We study the enhanced and convex incremental ELM (ECI-ELM) algorithm, which is a combination of the last 2 versions. The main findings are that ECI-ELM is fast, accurate, and fully scalable when it operates in a parallel system of distributed memory workstations. Experimental simulations on several benchmark data sets demonstrate that the ECI-ELM is the most accurate among the existing I-ELM, EI-ELM, and CI-ELM algorithms. We also analyze the convergence as a function of the hidden neurons and demonstrate that ECI-ELM has the lowest error rate curve and converges much faster than the other algorithms in all of the data sets. The parallel simulations also reveal that the data parallel training of the ECI-ELM can guarantee simplicity and straightforward mappings and can deliver speedups and scale-ups very close to linear.
机译:这项工作考虑了可伸缩的增量式极限学习机(I-ELM)算法,该算法可能适用于大数据回归。在I-ELM训练期间,隐藏的神经元被一个接一个地呈现,并且权重仅基于简单的直接求和,可以将其最有效地映射到并行环境中。现有的ELM增量版本为I-ELM,增强型增量ELM(EI-ELM)和凸增量ELM(CI-ELM)。我们研究了增强和凸增量ELM(ECI-ELM)算法,该算法是最后两个版本的组合。主要发现是,当ECI-ELM在分布式内存工作站的并行系统中运行时,它是快速,准确和完全可扩展的。在几个基准数据集上的实验仿真表明,ECI-ELM在现有的I-ELM,EI-ELM和CI-ELM算法中是最准确的。我们还分析了作为隐藏神经元的函数的收敛性,并证明了ECI-ELM具有最低的错误率曲线,并且在所有数据集中的收敛速度都比其他算法快得多。并行仿真还显示,ECI-ELM的数据并行训练可以保证简单和直接的映射,并且可以实现非常接近线性的加速和放大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号