首页> 外文期刊>Computational Intelligence and AI in Games, IEEE Transactions on >Creating Affective Autonomous Characters Using Planning in Partially Observable Stochastic Domains
【24h】

Creating Affective Autonomous Characters Using Planning in Partially Observable Stochastic Domains

机译:使用部分可观察的随机域中的规划来创建情感自治字符

获取原文
获取原文并翻译 | 示例

摘要

The ability to reason about and respond to their own emotional states can enhance the believability of Non-Player Characters (NPCs). In this paper, we use a Partially Observable Markov Decision Process (POMDP)-based framework to model emotion over time. A two-level appraisal model, involving quick and reactive vs. slow and deliberate appraisals, is proposed for the creation of affective autonomous characters based on POMDPs, wherein the probability of goal satisfaction is used in an appraisal and reappraisal process for emotion generation. We not only extend Probabilistic Computation Tree Logic (PCTL) for reasoning about the properties of emotional states based on POMDPs but also illustrate how four reactive (primary) emotions and nine deliberate (secondary) emotions can be derived by combining PCTL with the belief-desire theory of emotion. The results of an empirical study suggest that the proposed model can be used to create characters that appear to be more believable and more intelligent.
机译:推理和回应自己的情绪状态的能力可以增强非玩家角色(NPC)的可信度。在本文中,我们使用基于部分可观察的马尔可夫决策过程(POMDP)的框架来建模随时间变化的情绪。为建立基于POMDP的情感自主角色,提出了一个分为两级的评估模型,该模型包括快速反应的评估与慢速评估和故意评估的关系,其中目标满足的概率用于情感产生的评估和重新评估过程中。我们不仅扩展了概率计算树逻辑(PCTL)来基于POMDP推理情绪状态的特性,而且还说明了如何通过将PCTL与信念期望相结合来得出四种反应性(主要)情绪和九种故意(次要)情绪情感理论。实证研究的结果表明,所提出的模型可用于创建看起来更可信和更智能的角色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号