首页> 外文期刊>Computational Imaging, IEEE Transactions on >A Gaussian Mixture MRF for Model-Based Iterative Reconstruction With Applications to Low-Dose X-Ray CT
【24h】

A Gaussian Mixture MRF for Model-Based Iterative Reconstruction With Applications to Low-Dose X-Ray CT

机译:高斯混合MRF用于基于模型的迭代重建及其在低剂量X射线CT中的应用

获取原文
获取原文并翻译 | 示例

摘要

Markov random fields (MRFs) have been widely used as prior models in various inverse problems such as tomographic reconstruction. While MRFs provide a simple and often effective way to model the spatial dependencies in images, they suffer from the fact that parameter estimation is difficult. In practice, this means that MRFs typically have very simple structure that cannot completely capture the subtle characteristics of complex images. In this paper, we present a novel Gaussian mixture Markov random field model (GM-MRF) that can be used as a very expressive prior model for inverse problems such as denoising and reconstruction. The GM-MRF forms a global image model by merging together individual Gaussian-mixture models (GMMs) for image patches. In addition, we present a novel analytical framework for computing MAP estimates using the GM-MRF prior model through the construction of surrogate functions that result in a sequence of quadratic optimizations. We also introduce a simple but effective method to adjust the GM-MRF so as to control the sharpness in low- and high-contrast regions of the reconstruction separately. We demonstrate the value of the model with experiments including image denoising and low-dose CT reconstruction.
机译:马尔可夫随机场(MRF)已被广泛用作诸如层析重建等各种反问题中的先验模型。虽然MRF提供了一种简单且通常有效的方法来对图像中的空间依赖性进行建模,但它们却遭受参数估计困难的事实。实际上,这意味着MRF通常具有非常简单的结构,无法完全捕获复杂图像的微妙特征。在本文中,我们提出了一种新颖的高斯混合马尔可夫随机场模型(GM-MRF),该模型可以用作表达能力强的先验模型,用于去噪和重构等反问题。 GM-MRF通过将各个高斯混合模型(GMM)合并为图像补丁,从而形成一个全局图像模型。另外,我们提出了一种新的分析框架,用于通过构建替代函数来使用GM-MRF先前模型来计算MAP估计,从而导致一系列二次优化。我们还介绍了一种简单有效的方法来调整GM-MRF,以便分别控制重建的低对比度和高对比度区域的清晰度。我们通过包括图像降噪和低剂量CT重建在内的实验来证明该模型的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号