首页> 外文期刊>Computational Imaging, IEEE Transactions on >Object Depth Profile and Reflectivity Restoration From Sparse Single-Photon Data Acquired in Underwater Environments
【24h】

Object Depth Profile and Reflectivity Restoration From Sparse Single-Photon Data Acquired in Underwater Environments

机译:水下环境中稀疏单光子数据的物体深度剖面和反射率恢复

获取原文
获取原文并翻译 | 示例

摘要

This paper presents two new algorithms for the joint restoration of depth and reflectivity (DR) images constructed from time-correlated single-photon counting measurements. Two extreme cases are considered: 1) a reduced acquisition time that leads to very low photon counts; and 2) imaging in a highly attenuating environment (such as a turbid medium), which makes the reflectivity estimation more difficult at increasing range. Adopting a Bayesian approach, the Poisson distributed observations are combined with prior distributions about the parameters of interest, to build the joint posterior distribution. More precisely, two Markov random field (MRF) priors enforcing spatial correlations are assigned to the DR images. Under some justified assumptions, the restoration problem (regularized likelihood) reduces to a convex formulation with respect to each of the parameters of interest. This problem is first solved using an adaptive Markov chain Monte Carlo (MCMC) algorithm that approximates the minimum mean square parameter estimators. This algorithm is fully automatic since it adjusts the parameters of the MRFs by maximum marginal likelihood estimation. However, the MCMC-based algorithm exhibits a relatively long computational time. The second algorithm deals with this issue and is based on a coordinate descent algorithm. Results on single-photon depth data from laboratory-based underwater measurements demonstrate the benefit of the proposed strategy that improves the quality of the estimated DR images.
机译:本文提出了两种新的算法,用于联合恢复由时间相关的单光子计数测量构建的深度和反射率(DR)图像。考虑了两种极端情况:1)减少了采集时间,导致光子计数非常低; 2)在高度衰减的环境(例如混浊的介质)中成像,这使得反射率估计在增大范围时更加困难。采用贝叶斯方法,将泊松分布的观测值与感兴趣参数的先验分布相结合,以建立联合后验分布。更精确地,将执行空间相关性的两个先验马尔可夫随机场(MRF)分配给DR图像。在一些合理的假设下,关于每个感兴趣的参数,恢复问题(正规化的似然性)简化为凸公式。首先使用自适应马尔可夫链蒙特卡洛(MCMC)算法解决该问题,该算法近似最小均方参数估计量。该算法是全自动的,因为它通过最大边际似然估计来调整MRF的参数。但是,基于MCMC的算法具有相对较长的计算时间。第二种算法是基于坐标下降算法来解决此问题的。来自基于实验室的水下测量的单光子深度数据的结果证明了所提出策略的好处,该策略可提高估计的DR图像的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号