首页> 外文期刊>IEEE Transactions on Image Processing >Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data
【24h】

Lidar Waveform-Based Analysis of Depth Images Constructed Using Sparse Single-Photon Data

机译:基于激光雷达波形的稀疏单光子数据深度图像分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new Bayesian model and algorithm used for depth and reflectivity profiling using full waveforms from the time-correlated single-photon counting measurement in the limit of very low photon counts. The proposed model represents each Lidar waveform as a combination of a known impulse response, weighted by the target reflectivity, and an unknown constant background, corrupted by Poisson noise. Prior knowledge about the problem is embedded through prior distributions that account for the different parameter constraints and their spatial correlation among the image pixels. In particular, a gamma Markov random field (MRF) is used to model the joint distribution of the target reflectivity, and a second MRF is used to model the distribution of the target depth, which are both expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm is then proposed to perform Bayesian inference. This algorithm is equipped with a stochastic optimization adaptation mechanism that automatically adjusts the parameters of the MRFs by maximum marginal likelihood estimation. Finally, the benefits of the proposed methodology are demonstrated through a series of experiments using real data.
机译:本文介绍了一种新的贝叶斯模型和算法,用于在深度非常低的光子计数范围内使用时间相关的单光子计数测量中的完整波形进行深度和反射率分析。提出的模型将每个激光雷达波形表示为已知脉冲响应(由目标反射率加权)和未知常数背景(受泊松噪声破坏)的组合。通过考虑各种参数约束及其在图像像素之间的空间相关性的先验分布,可以嵌入有关该问题的先验知识。特别是,使用伽马氏随机场(MRF)来建模目标反射率的联合分布,并使用第二个MRF来建模目标深度的分布,这两个目标都有望表现出显着的空间相关性。然后提出了一种自适应马尔可夫链蒙特卡罗算法来进行贝叶斯推理。该算法配备了随机优化自适应机制,该机制通过最大边际似然估计自动调整MRF的参数。最后,通过使用真实数据的一系列实验证明了所提出方法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号