首页> 外文期刊>Computational Imaging, IEEE Transactions on >A GPU-Accelerated Multivoxel Update Scheme for Iterative Coordinate Descent (ICD) Optimization in Statistical Iterative CT Reconstruction (SIR)
【24h】

A GPU-Accelerated Multivoxel Update Scheme for Iterative Coordinate Descent (ICD) Optimization in Statistical Iterative CT Reconstruction (SIR)

机译:统计迭代CT重建(SIR)中用于迭代坐标下降(ICD)优化的GPU加速Multivoxel更新方案

获取原文
获取原文并翻译 | 示例

摘要

Statistical iterative reconstruction (SIR) algorithms have shown great potential for improving image quality in reduced and low dose X-ray computed tomography (CT). However, high computational cost and long reconstruction times have so far prevented the use of SIR in practical applications. Various optimization algorithms have been proposed to make SIR parallelizable for execution on multicore computational platforms, whereas others have sought to improve its convergence rate. Parallelizing on a set of decoupled voxels within an iterative coordinate descent (ICD) optimization framework has shown good promise to achieve both of these premises. However, so far these types of frameworks come at the price of additional complexities or are limited to parallel beam geometry only. We improve on this prior research and present a framework, which also achieves parallelism by processing sets of independent voxels, but does not introduce additional complexities and has no restrictions on beam geometry. Our method uses a novel multivoxel update (MVU) scheme within a general ICD framework fully optimized for acceleration on commodity GPUs. We also investigate different GPU memory access patterns to increase cache hit-rates that result in improved time performance in the ICD framework. Experiments demonstrate speedups of two orders of magnitude for clinical datasets in cone-beam CT geometry, compared to the single-voxel update scheme native to conventional ICD-based SIR. Finally, since our MVU scheme operates on fully independent voxels, it maintains the fast convergence properties of ICD-based SIR. Consequently, the speedups achieved by parallel computing are not diminished by slower convergence of the iterative updates or by any additional overhead to decouple conflicting voxels.
机译:统计迭代重建(SIR)算法在减少和低剂量X射线计算机断层扫描(CT)中显示出改善图像质量的巨大潜力。但是,到目前为止,高计算成本和长重建时间阻止了SIR在实际应用中的使用。已经提出了各种优化算法以使SIR可并行化以在多核计算平台上执行,而其他算法则试图提高其收敛速度。在迭代坐标下降(ICD)优化框架内并行处理一组解耦体素已显示出实现这两个前提的良好前景。但是,到目前为止,这些类型的框架是以额外的复杂性为代价的,或者仅限于平行梁的几何形状。我们在此先前研究的基础上进行了改进,并提出了一种框架,该框架还可以通过处理独立体素的集合来实现并行性,但不会带来额外的复杂性,并且对射束几何形状没有任何限制。我们的方法在完全优化用于商用GPU加速的通用ICD框架内使用新颖的多体素更新(MVU)方案。我们还研究了不同的GPU内存访问模式,以提高缓存命中率,从而改善ICD框架中的时间性能。实验证明,与传统的基于ICD的SIR固有的单体素更新方案相比,锥束CT几何体中的临床数据集可提高两个数量级。最后,由于我们的MVU方案在完全独立的体素上运行,因此它保持了基于ICD的SIR的快速收敛性。因此,通过并行更新实现的加速不会因迭代更新的收敛速度较慢或通过解耦冲突体素而产生的任何额外开销而降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号