首页> 外文期刊>Computational Imaging, IEEE Transactions on >Low Rank Plus Sparse Decomposition of Synthetic Aperture Radar Data for Target Imaging
【24h】

Low Rank Plus Sparse Decomposition of Synthetic Aperture Radar Data for Target Imaging

机译:低等级加上目标成像的合成孔径雷达数据的稀疏分解

获取原文
获取原文并翻译 | 示例

摘要

We analyze synthetic aperture radar (SAR) imaging of complex ground scenes that contain both stationary and moving targets. In the usual SAR acquisition scheme, we consider ways to preprocess the data so as to separate the contributions of the moving targets from those due to stationary background reflectors. Both components of the data, that is, reflections from stationary and moving targets, are considered as signal and are needed for target imaging and tracking, respectively. The approach we use is to decompose the data matrix into a low rank and a sparse part. This decomposition enables us to capture the reflections from moving targets into the sparse part and those from stationary targets into the low rank part of the data. The computational tool for this is robust principal component analysis (RPCA) applied to the SAR data matrix. We also introduce a lossless baseband transformation of the data, which simplifies the analysis and improves the performance of the RPCA algorithm. A modified version of RPCA, the stable principal component pursuit (PCP), is robust to additive noise. Our main contribution is a theoretical analysis that determines an optimal choice of parameters for the RPCA algorithm so as to have an effective and stable separation of SAR data coming from moving and stationary targets. This analysis also gives a lower bound for detectable target velocities. We show in particular that the rank of the sparse matrix is proportional to the square root of the target's speed in the direction that connects the SAR platform trajectory to the imaging region. The robustness of the approach is illustrated with numerical simulations in the X-band SAR regime.
机译:我们分析了包含静止和移动目标的复杂地面场景的合成孔径雷达(SAR)成像。在通常的SAR收购方案中,我们考虑预处理数据的方法,以便将移动目标的贡献与静止背景反射器分开。数据的两个组件,即静止和移动目标的反射,被认为是信号,并且分别需要进行目标成像和跟踪。我们使用的方法是将数据矩阵分解为低等级和稀疏部分。该分解使我们能够捕获从将目标移动到稀疏部分中的反射,并且从静止目标到数据的低等级部分中的反射。计算工具是适用于SAR数据矩阵的鲁棒主成分分析(RPCA)。我们还引入了数据的无损基带换器,这简化了分析并提高了RPCA算法的性能。改进版本的RPCA,稳定的主成分追求(PCP)是对加性噪声的强大。我们的主要贡献是一种理论分析,确定RPCA算法的最佳选择参数,以便具有来自移动和固定目标的SAR数据的有效和稳定的分离。该分析还给出了可检测目标速度的下限。特别说明,特别地,稀疏矩阵的等级与目标速度的平方根在将SAR平台轨迹连接到成像区域的方向上成比例。该方法的鲁棒性被X波段SAR制度中的数值模拟说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号