首页> 外文期刊>Computational Geosciences >History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations
【24h】

History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations

机译:使用具有多个数据同化的集成卡尔曼滤波器,历史匹配延时地震数据

获取原文
获取原文并翻译 | 示例

摘要

The ensemble Kalman filter (EnKF) has become a popular method for history matching production and seismic data in petroleum reservoir models. However, it is known that EnKF may fail to give acceptable data matches especially for highly nonlinear problems. In this paper, we introduce a procedure to improve EnKF data matches based on assimilating the same data multiple times with the covariance matrix of the measurement errors multiplied by the number of data assimilations. We prove the equivalence between single and multiple data assimilations for the linear-Gaussian case and present computational evidence that multiple data assimilations can improve EnKF estimates for the nonlinear case. The proposed procedure was tested by assimilating time-lapse seismic data in two synthetic reservoir problems, and the results show significant improvements compared to the standard EnKF. In addition, we review the inversion schemes used in the EnKF analysis and present a rescaling procedure to avoid loss of information during the truncation of small singular values.
机译:集成卡尔曼滤波器(EnKF)已成为在石油储层模型中历史匹配生产和地震数据的一种流行方法。但是,众所周知,EnKF可能无法给出可接受的数据匹配,尤其是对于高度非线性的问题。在本文中,我们介绍了一种通过将测量误差的协方差矩阵乘以数据同化次数而多次吸收相同数据来改善EnKF数据匹配的方法。我们证明了线性高斯情况下单个和多个数据同化之间的等效性,并提供了计算证据,即多个数据同化可以改善非线性情况下的EnKF估计。通过同化两个合成油藏问题中的延时地震数据,对提出的程序进行了测试,与标准的EnKF相比,结果显示出显着的改进。此外,我们回顾了EnKF分析中使用的反演方案,并提出了重新定标程序,以避免在小奇异值截断期间丢失信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号