首页> 外文OA文献 >History Matching of 4D Seismic Data Attributes using the Ensemble Kalman Filter
【2h】

History Matching of 4D Seismic Data Attributes using the Ensemble Kalman Filter

机译:使用Ensemble Kalman滤波器对4D地震数据属性进行历史匹配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the most challenging tasks in the oil industry is the production of reliable reservoir forecast models. Because of different sources of uncertainties the numerical models employed are often only crude approximations of the reality. This problem is tackled by the conditioning of the model with production data through data assimilation. This process is known in the oil industry as history matching. Several recent advances are being used to improve history matching reliability, notably the use of time-lapse seismic data and automated history matching software tools. One of the most promising data assimilation techniques employed in the oil industry is the ensemble Kalman filter (EnKF) because its ability to deal with highly non-linear models, low computational cost and easy computational implementation when compared with other methods.A synthetic reservoir model was used in a history matching study designed to predict the peak production allowing decision makers to properly plan field development actions. If only production data is assimilated, a total of 12 years of historical data is required to properly characterize the production uncertainty and consequently the correct moment to take actions and decommission the field. However if time-lapse seismic data is available this conclusion can be reached 4 years in advance due to the additional fluid displacement information obtained with the seismic data. Production data provides geographically sparse data in contrast with seismic data which are sparse in time.Several types of seismic attributes were tested in this study. Poisson’s ratio proved to be the most sensitive attribute to fluid displacement. In practical applications, however the use of this attribute is usually avoided due to poor quality of the data. Seismic impedance tends to be more reliable.Finally, a new conceptual idea was proposed to obtain time-lapse information for a history matching study. The use of crosswell time-lapse seismic tomography to map velocities in the interwell region was demonstrated as a potential tool to ensure survey reproducibility and low acquisition cost when compared with full scale surface surveys. This approach relies on the higher velocity sensitivity to fluid displacement at higher frequencies. The velocity effects were modeled using the Biot velocity model. This method provided promising results leading to similar RRMS error reductions when compared with conventional history matched surface seismic data.
机译:石油工业中最具挑战性的任务之一是生产可靠的储层预测模型。由于不确定性的来源不同,所采用的数值模型通常只是现实的粗略近似。通过数据同化对模型进行生产数据处理,可以解决该问题。在石油工业中,此过程称为历史匹配。近来的一些进步正在用于提高历史匹配的可靠性,特别是时移地震数据和自动历史匹配软件工具的使用。集成卡尔曼滤波器(EnKF)是石油工业中最有前途的数据同化技术之一,因为与其他方法相比,它具有处理高度非线性模型,计算成本低且易于实现的能力。用于历史匹配研究的目的是预测峰值产量,从而使决策者能够适当计划油田开发活动。如果仅将生产数据同化,则总共需要12年的历史数据才能正确地描述生产不确定性,从而正确地采取行动并停止生产。但是,如果有延时地震数据可用,由于与地震数据一起获得的附加流体位移信息,可以提前4年得出该结论。与时间上稀疏的地震数据相比,生产数据提供的地理稀疏数据。本研究中测试了几种类型的地震属性。泊松比被证明是对流体驱替最敏感的属性。然而,在实际应用中,由于数据质量差,通常避免使用此属性。最后,提出了一种新的概念方法来获取时滞信息以进行历史匹配研究。与全面的地面勘测相比,使用井间延时地震层析成像来绘制井间区域的速度图被证明是确保勘测可重复性和较低购置成本的潜在工具。这种方法依赖于较高频率下对流体驱替的较高速度敏感性。使用Biot速度模型对速度效果进行建模。与传统的历史匹配地表地震数据相比,该方法提供了可喜的结果,导致类似的RRMS误差减少。

著录项

  • 作者

    Ravanelli Fabio M.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号