首页> 外文期刊>Composite Structures >A novel method to predict the stiffness evolution of in-service wind turbine blades based on deep learning models
【24h】

A novel method to predict the stiffness evolution of in-service wind turbine blades based on deep learning models

机译:一种新的方法,以基于深度学习模型预测役风力涡轮机叶片刚度演化

获取原文
获取原文并翻译 | 示例

摘要

Since wind turbines operate in a complex environment for long term, the fatigue behavior of the blades can be influenced by wind, illumination, moisture, temperature, and so forth. For wind turbine blade manufacturers, the determination of their fatigue limit before delivery is necessary and fatigue acceleration experiments usually require a lot of labor and experimental costs. As a machine learning paradigm, deep learning focuses on the inherent hierarchical models of data and has achieved notable success in computer vision, speech recognition, natural language processing, etc. Aimed at reducing the time and the costs during fatigue tests, this paper studies a training-based method for wind turbine blade stiffness prediction using time series stiffness data under fatigue tests. Based on deep learning methods including convolutional neural network, long-short term memory network and the hybrid network, the residual stiffness of the blade with fatigue life under fatigue tests is obtained by combining the fatigue historical data. The obtained results show that the developed models can learn features directly from raw stiffness data and complete the residual stiffness prediction in succession. White Gaussian noise with different signal-to-noise ratios is also added to all stiffness data to demonstrate the models' feasibility of stiffness prediction.
机译:由于风力涡轮机长期在复杂的环境中运行,因此叶片的疲劳行为可能受风,照明,湿气,温度等的影响。对于风力涡轮机刀片制造商,在交付前的疲劳极限的确定是必要的,并且疲劳加速实验通常需要大量的劳动力和实验成本。作为一种机器学习范式,深入学习专注于数据的固有层次模型,并且在计算机视觉,语音识别,自然语言处理等中取得了显着成功,旨在减少疲劳测试期间的时间和成本,研究a疲劳试验下使用时间序列刚度数据的风力涡轮机叶片刚度预测的基于训练方法。基于包括卷积神经网络,长短期记忆网络和混合网络的深度学习方法,通过组合疲劳历史数据来获得疲劳试验下疲劳寿命的叶片的残余刚度。所获得的结果表明,开发的模型可以直接从原始刚度数据学习特征,并在继承中完成残余刚度预测。所有刚度数据也添加了具有不同信噪比的白色高斯噪声,以证明模型的刚度预测的可行性。

著录项

  • 来源
    《Composite Structures》 |2020年第11期|112702.1-112702.12|共12页
  • 作者单位

    Harbin Inst Technol HIT Ctr Composite Mat & Struct 2 Yikuang St Sci Pk POB 301 Harbin Peoples R China;

    Harbin Inst Technol HIT Ctr Composite Mat & Struct 2 Yikuang St Sci Pk POB 301 Harbin Peoples R China;

    Harbin Inst Technol HIT Ctr Composite Mat & Struct 2 Yikuang St Sci Pk POB 301 Harbin Peoples R China;

    Harbin Inst Technol Sch Comp Sci & Technol Harbin 150001 Peoples R China;

    Harbin Inst Technol Dept Astronaut Sci & Mech Harbin 150001 Peoples R China;

    Harbin Inst Technol HIT Ctr Composite Mat & Struct 2 Yikuang St Sci Pk POB 301 Harbin Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning; Wind turbine blade; Fatigue test; Stiffness prediction;

    机译:深入学习;风力涡轮机叶片;疲劳试验;刚度预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号