首页> 外文期刊>Composite Structures >A neural network enhanced system for learning nonlinear constitutive law and failure initiation criterion of composites using indirectly measurable data
【24h】

A neural network enhanced system for learning nonlinear constitutive law and failure initiation criterion of composites using indirectly measurable data

机译:一种神经网络增强系统,用于使用间接测量数据学习非线性本构法和复合材料的失效启动标准

获取原文
获取原文并翻译 | 示例

摘要

A neural network enhanced system containing a subsystem with one or multiple neural networks is proposed. Instead of defining the loss function as the direct output of a neural network model, the proposed method uses the system output, which can be measured from experiments, to define the loss function. The loss function is contributed by the outputs from one or multiple neural network models through a subsystem. As a result, the direct output of the ANN model is not required to be measurable from experiments. A set of new back-propagation equations have been derived for this system. Two examples are given using the proposed system: learning the nonlinear in-plane shear constitutive law and learning the failure initiation criterion of fiber-reinforced composites (FRC). The neural network models in both examples are trained at the lamina level using the measurable experimental responses of laminates. The results obtained from the learned neural network models agree well with the corresponding analytical solutions. The proposed method can be used to train neural network models in a subsystem when only the input and output of the system is measurable.
机译:提出了一种包含具有一个或多个神经网络的子系统的神经网络增强系统。该方法使用可以从实验中测量的系统输出来定义作为神经网络模型的直流输出的损失功能,而不是将损失功能定义为直接输出。损耗函数通过子系统通过一个或多个神经网络模型的输出贡献。结果,ANN模型的直接输出不需要从实验中测量。已经为此系统推出了一组新的背传播方程。使用所提出的系统给出了两个示例:学习非线性面内剪切本构法并学习纤维增强复合材料(FRC)的失效起始标准。两个示例中的神经网络模型使用层压板的可测量的实验反应在薄层培训。从学习的神经网络模型获得的结果与相应的分析解决方案很好。该提出的方法可用于在仅测量系统的输入和输出时培训子系统中的神经网络模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号