首页> 外文期刊>Composite Structures >Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions
【24h】

Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions

机译:由具有不同边界条件的二维功能梯度材料(2D-FGM)组成的Timoshenko梁的屈曲

获取原文
获取原文并翻译 | 示例

摘要

In the present paper, two-dimensional functionally graded materials (2D-FGMs) are presented for the first time to investigate the buckling of beams with different boundary conditions. It is assumed that the material properties of the beam vary in both axial and thickness directions according to the power-law form. Basis on the Timoshenko beam theory (TBT), the critical buckling load of 2D-FG beams is obtained using the Ritz method. In order to obtain buckling load, the trial functions for axial, transverse deflections and rotation of the cross-sections are expressed in polynomial forms. Clamped-clamped (CC), Clamped-simple (CS), simple-simple (SS) and Clamped-Free (CF) boundary conditions are considered. The boundary conditions are satisfied by adding auxiliary functions to the displacement functions. At the same time, buckling load of 2D-FG beam is calculated for Euler-Bernoulli beam theory for comparison purposes. Some numerical results are provided to examine the effects of the material gradation, shear deformation (or aspect ratio) and different boundary conditions on the buckling behavior of 2D-FG beams. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文首次提出了二维功能梯度材料(2D-FGM),以研究具有不同边界条件的梁的屈曲。假定梁的材料特性根据幂律形式在轴向和厚度方向上均发生变化。基于Timoshenko梁理论(TBT),使用Ritz方法获得2D-FG梁的临界屈曲载荷。为了获得屈曲载荷,轴向,横向变形和横截面旋转的试验函数以多项式形式表示。考虑了夹紧夹紧(CC),简单夹紧(CS),简单夹紧(SS)和自由夹紧(CF)边界条件。通过向位移函数添加辅助函数来满足边界条件。同时,为了进行比较,针对欧拉-伯努利梁理论计算了2D-FG梁的屈曲载荷。提供了一些数值结果,以检验材料梯度,剪切变形(或长宽比)和不同边界条件对2D-FG梁屈曲行为的影响。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号