首页> 外文期刊>Composite Structures >Guided waves propagation in anisotropic hollow cylinders by Legendre polynomial solution based on state-vector formalism
【24h】

Guided waves propagation in anisotropic hollow cylinders by Legendre polynomial solution based on state-vector formalism

机译:基于状态矢量形式论的勒让德多项式解在各向异性空心圆柱中的导波传播

获取原文
获取原文并翻译 | 示例

摘要

A spectral approach was presented in the computation of dispersion curves for the general anisotropic hollow cylinders. The derivation is based on the hybrid method of the state-vector formalism and Legendre polynomials expansion, which was previously adopted for the anisotropic plates. This method will lead to an eigenvalue/eigenvector problem for the calculation of wavenumbers and displacement profiles. This hybrid method avoids solving the transcendental dispersion equation. A closed-form solution for the hollow cylinder, involving multiple integral expressions, is demonstrated. A stable scheme for the integration expansion was established by re-expanding the expansion operators from the first round Legendre polynomial expansion versus the displacements. Usually, the traditional matrix methods are based on root-finding algorithms, which is difficult to implement in anisotropic tubes. In this research, the hybrid approach we proposed provides a reliable mathematical solution of wave propagations in an anisotropic hollow cylinder. Applications will be illustrated using isotropic and orthotropic hollow cylinders, in which the isotropic case agrees well with the results by global matrix method. The dispersion curves of orthotropic hollow cylinders, when the out radius set to approximate infinity, are compared to its corresponding anisotropic plate, which is obtained from our previous work. Furthermore, the displacement and stress profiles will be given and analyzed for an orthotropic tube, which has 10 mm thickness with an out radius of 50 mm.
机译:在一般各向异性空心圆柱体的色散曲线计算中,提出了一种频谱方法。该推导基于状态向量形式主义和Legendre多项式展开的混合方法,该方法先前已用于各向异性板。此方法将导致特征值/特征向量问题,无法计算波数和位移轮廓。这种混合方法避免了求解超越色散方程。演示了涉及多个整数表达式的空心圆柱体的封闭形式解决方案。通过将展开算子从第一轮勒让德多项式展开相对于位移进行重新展开,从而建立了一个稳定的积分展开方案。通常,传统的矩阵方法是基于寻根算法的,很难在各向异性管中实现。在这项研究中,我们提出的混合方法为各向异性空心圆柱体中的波传播提供了可靠的数学解决方案。将使用各向同性和各向同性的空心圆柱体来说明其应用,其中各向同性的情况与通过全局矩阵法得出的结果非常吻合。将正交各向异性空心圆柱体的色散曲线(当其外径设置为近似无穷大时)与其对应的各向异性板(从我们先前的工作中获得)进行比较。此外,将给出并分析正交各向异性管的位移和应力分布,该正交各向异性管的厚度为10 mm,半径为50 mm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号