首页> 外文期刊>Compel >A DWT-based approach for detection of interturn faults in power transformers
【24h】

A DWT-based approach for detection of interturn faults in power transformers

机译:基于DWT的电力变压器匝间故障检测方法

获取原文
获取原文并翻译 | 示例

摘要

Purpose - Interturn winding faults, one of the most important causes of power transformers failures, cannot be detected by existing detection methods until they develop into high-level faults with more severe damage to the transformer. The purpose of this paper is to describe development of a new discrete wavelet transform (DWT) based approach for detection of winding interturn faults. Design/methodology/approach - The following approach was accomplished for development of the proposed fault detection method in this study. The DWT was first applied to decompose the terminal current signals of a transformer, which in turn were obtained from simulations using a finite elements method model of the transformer, into a series of wavelet components. Based on the characteristic features associated with interturn faults extracted from the decomposed waveforms of the terminal currents, a detection scheme was developed. An experimental setup was used to validate the proposed detection method. Findings - The results of this study demonstrate the efficacy of DWT applied on terminal currents of the transformer to identify interturn faults on the windings well before such faults lead to a catastrophic failure. It is believed that, based on the present findings, there definitely exists scope for improving interturn fault diagnosis with wavelet transform. Research limitations/implications - Performing more detailed studies to find all relevant characteristics of the wavelet transform in this application, identifying the location of the faulted turns along winding, applying the method for indicating early stages of turn insulation deterioration and evaluating other type of wavelets for this application would be some future directions of this research. Practical implications - With the proposed method, it is becoming possible to detect early signs of the fault occurrence, so that the necessary corrective actions can be taken to prevent long-lasting outages and reduce down times of the faulty power transformer. The method will be particularly useful as a complement for the classical protection devices of the power transformers. Originality/value - Some recent studies have been carried out regarding the application of DWT for discrimination between an internal fault and other disturbances such as magnetizing inrush and external faults. This paper extends those studies for the detection of interturn faults using more quantitative and qualitative characteristics features.
机译:目的-匝间绕组故障是电力变压器故障的最重要原因之一,只有当它们发展成为对变压器造成更严重损害的高级故障时,才能通过现有的检测方法进行检测。本文的目的是描述一种新的基于离散小波变换(DWT)的方法来检测绕组匝间故障。设计/方法/方法-以下方法已完成,用于开发本研究中建议的故障检测方法。首先将DWT应用于将变压器的终端电流信号分解为一系列小波分量,这些信号又是使用变压器的有限元方法模型通过仿真获得的。基于与从终端电流的分解波形中提取的匝间故障相关的特征,开发了一种检测方案。实验设置用于验证所提出的检测方法。发现-这项研究的结果证明了在变压器的终端电流上应用DWT的功效,可以在绕组故障之前导致灾难性故障,从而识别绕组上的匝间故障。可以认为,基于目前的发现,肯定存在利用小波变换改善匝间故障诊断的范围。研究局限/含意-进行更详细的研究以找到本应用中的小波变换的所有相关特征,确定故障绕组沿绕组的位置,应用指示匝间绝缘劣化的早期阶段的方法并评估其他类型的小波该应用将是本研究的未来方向。实际意义-通过提出的方法,有可能发现故障的早期征​​兆,从而可以采取必要的纠正措施,以防止长期停电并减少故障变压器的停机时间。该方法作为电力变压器经典保护装置的补充将特别有用。独创性/价值-关于DWT在区分内部故障和其他干扰(如励磁涌流和外部故障)方面的应用,最近进行了一些研究。本文将这些研究扩展到使用更多定量和定性特征来检测匝间故障。

著录项

  • 来源
    《Compel》 |2011年第2期|p.483-504|共22页
  • 作者

    Vahid Behjat; Abolfazl Vahedi;

  • 作者单位

    Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran and Center of Excellence for Power System Automation and Operation, Tehran, Iran;

    Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran and Center of Excellence for Power System Automation and Operation, Tehran, Iran;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    transformers; windings; wave physics; transforms; electrical faults;

    机译:变压器绕组波物理学转变电气故障;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号