首页> 外文期刊>Communications of the ACM >Encoding a Circuit's Execution in a Polynomial
【24h】

Encoding a Circuit's Execution in a Polynomial

机译:在多项式中编码电路的执行

获取原文
获取原文并翻译 | 示例

摘要

This sidebar demonstrates a connection between program execution and polynomials. As a warmup, consider an AND gate, with two (binary) inputs, z_1, z_2. One can represent its execution as a function: AND (z_1, z_2) = z_1·z_2. Here, the function AND behaves exactly as the gate would: it evaluates to 1 if z_1 and z_2 are both 1, and it evaluates to 0 in the other three cases. Now, consider this function of three variables: f_(AND) (z_1,Z_2,z_3) = Z_3-AND(z_1,Z_2) Observe that f_(AND) (z_1, z_2, z_3) evaluates to 0 when, and only when, z_3 equals the AND of z_1 and z_2. For example, f_(AND) (1,1,1) = 0 and f_(AND) (0,1,0) = 0 (both of these cases correspond to correct computation by an AND gate), but f_(AND) (0,1,1) ≠ 0.
机译:此侧边栏演示了程序执行和多项式之间的联系。作为预热,考虑具有两个(二进制)输入z_1,z_2的AND门。可以将其执行表示为一种函数:AND(z_1,z_2)= z_1·z_2。在这里,函数AND的行为与门的行为完全相同:如果z_1和z_2都为1,则其取值为1,而在其他三种情况下,其取值为0。现在,考虑以下三个变量的函数:f_(AND)(z_1,Z_2,z_3)= Z_3-AND(z_1,Z_2)观察f_(AND)(z_1,z_2,z_3)在且仅当,z_3等于z_1和z_2的AND。例如,f_(AND)(1,1,1)= 0和f_(AND)(0,1,0)= 0(这两种情况均对应于AND门的正确计算),但f_(AND) (0,1,1)≠0。

著录项

  • 来源
    《Communications of the ACM》 |2015年第2期|77-77|共1页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号