首页> 外文期刊>Communications in Statistics - Simulation and Computation >Linearized Ridge Regression Estimator Under the Mean Squared Error Criterion in a Linear Regression Model
【24h】

Linearized Ridge Regression Estimator Under the Mean Squared Error Criterion in a Linear Regression Model

机译:线性回归模型中均方误差准则下的线性化岭回归估计

获取原文
获取原文并翻译 | 示例

摘要

This article mainly aims to study the superiority of the notion of linearized ridge regression estimator (LRRE) under the mean squared error criterion in a linear regression model. Firstly, we derive uniform lower bound of MSE for the class of the generalized shrinkage estimator (GSE), based on which it is shown that the optimal LRRE is the best estimator in the class of GSE's. Secondly, we propose the notion of the almost unbiased completeness and show that LRRE possesses such a property. Thirdly, the simulation study is given, from which it indicates that the LRRE performs desirably. Finally, the main results are applied to the well known Hald data.
机译:本文的主要目的是研究线性回归模型中均方误差标准下线性化岭回归估计器(LRRE)概念的优越性。首先,我们针对广义收缩估计量(GSE)的类别推导了MSE的统一下界,在此基础上,最优LRRE是GSE类别中的最佳估计量。其次,我们提出了几乎无偏的完整性的概念,并表明LRRE拥有这样的性质。第三,给出了仿真研究,表明LRRE的性能令人满意。最后,主要结果应用于众所周知的Hald数据。

著录项

  • 来源
  • 作者

  • 作者单位

    Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an, P.R. China;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号