首页> 外文期刊>Communications in Statistics. B, Simulation and Computation >Corrections for Bias in Maximum Likelihood Parameter Estimates Due to Nuisance Parameters
【24h】

Corrections for Bias in Maximum Likelihood Parameter Estimates Due to Nuisance Parameters

机译:干扰参数对最大似然参数估计中的偏差的校正

获取原文
获取原文并翻译 | 示例

摘要

In his Fisher Lecture, Efron (Efron, B. R. A. (1998). Fisher in the 21st Century (with discussion). Statistical Science 13:95-122) pointed out that maximum likelihood estimates (MLE) can be badly biased in certain situations involving many nuisance parameters. He predicted that with modern computing equipment a computer-modified version of the MLE that was less biased could become the default estimator of choice in applied problems in the 21st century. This article discusses three modifications╚DLindsay's conditional likelihood, integrated likelihood, and Bartlett's bias-corrected estimating function. Eaeh is evaluated through a study of the bias and MSE of the estimates in a stratified Weibull model with a moderate number of nuisance parameters. In Lindsay's estimating equation, three different methods for estimation of the nuisance parameters are evaluated―the restricted maximum likelihood estimate (RMLE), a Bayes estimator, and a linear Bayes estimator. In our model, the conditional likelihood with RMLE of the nuisance parameters is equivalent to Bartlett's bias-corrected estimating function. In the simulation we show that Lindsay's conditional likelihood is in general preferred, irrespective of the estimator of the nuisance parameters. Although the integrated likelihood has smaller MSE when the precise nature of the prior distribution of the nuisance parameters is known, this approach may perform poorly in cases where the prior distribution of the nuisance parameters is not known, especially using a non-informative prior. In practice, Lindsay's method using the RMLE of the nuisance parameters is recommended.
机译:Efron(Efron,BRA(1998)。21世纪的Fisher(正在讨论)。统计科学13:95-122)在他的Fisher演讲中指出,在某些情况下,包括令人讨厌的参数。他预测,使用现代计算设备,对MLE进行计算机修改的版本会减少偏差,可能会成为21世纪应用问题的默认选择。本文讨论了三种修改:DLindsay的条件似然,积分似然和Bartlett的偏倚校正估计函数。 Eaeh是通过对具有中等数量扰民参数的分层Weibull模型中的估计值的偏倚和MSE进行研究来评估的。在Lindsay的估计方程式中,评估了三种不同的干扰参数估计方法:受限最大似然估计(RMLE),贝叶斯估计器和线性贝叶斯估计器。在我们的模型中,扰动参数的RMLE条件似然性等效于Bartlett的偏差校正估计函数。在仿真中,我们表明,无论有害参数的估计量如何,通常都倾向于使用Lindsay的条件似然。尽管当已知烦人参数的先验分布的精确性质时,综合似然性的MSE较小,但在不了解烦人参数的先验分布的情况下,尤其是使用非信息性先验时,此方法可能效果不佳。在实践中,建议使用骚扰参数RMLE的Lindsay方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号