首页> 外文期刊>Communications in Statistics >Approximate Small-Sample Tests of Fixed Effects in Nonlinear Mixed Models
【24h】

Approximate Small-Sample Tests of Fixed Effects in Nonlinear Mixed Models

机译:非线性混合模型中固定效应的近似小样本检验

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear mixed effect models have been studied extensively over several decades, particularly in pharmacokinetic and pharmacodynamic applications. Here, we focus on investigating the performance of commonly applied tests of linear hypotheses about the fixed effect parameters under different approximations to the likelihood function and to the estimated covariance matrix of the estimators. Included are the first-order approximation (FIRO), first-order conditional approximation (FOCE), and Gaussian quadrature approximation (AGQ) estimation methods. There is no straightforward way to mimic the approximations and adjustments taken in linear mixed models, such as the Kackar-Harville-Jeske-Kenward-Roger approach. By simulations, we illustrate the accuracy of p-values for the tests considered here. The observed results indicate that FOCE and AGQ estimation methods outperform FIRO. The test with an adjustment coefficient that takes into consideration the number of sampling units and the number of fixed effect parameters (Gallant-type) seems to perform closest to desirable even for small-sample sizes.
机译:非线性混合效应模型已被广泛研究了数十年,特别是在药代动力学和药效学应用中。在这里,我们专注于调查关于可能性函数和估计量的协方差矩阵的不同近似值下,关于固定效应参数的线性假设的常用检验的性能。包括一阶近似(FIRO),一阶条件近似(FOCE)和高斯正交近似(AGQ)估计方法。没有直接的方法可以模仿线性混合模型中的近似值和调整量,例如Kackar-Harville-Jeske-Kenward-Roger方法。通过仿真,我们说明了此处考虑的测试的p值的准确性。观察结果表明FOCE和AGQ估计方法优于FIRO。考虑到采样单位数量和固定效果参数数量(Gallant型)的调整系数的测试,即使对于小样本量,似乎也表现出最接近理想的效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号