首页> 外文期刊>Communications in Statistics >The Use of Working Variables in the Bayesian Modeling of Mean and Dispersion Parameters in Generalized Nonlinear Models with Random Effects
【24h】

The Use of Working Variables in the Bayesian Modeling of Mean and Dispersion Parameters in Generalized Nonlinear Models with Random Effects

机译:广义随机效应非线性模型均值和色散参数贝叶斯建模中工作变量的使用

获取原文
获取原文并翻译 | 示例

摘要

This article is aimed at reviewing a novel Bayesian approach to handle inference and estimation in the class of generalized nonlinear models. These models include some of the main techniques of statistical methodology, namely generalized linear models and parametric nonlinear regression. In addition, this proposal extends to methods for the systematic treatment of variation that is not explicitly predicted within the model, through the inclusion of random effects, and takes into account the modeling of dispersion parameters in the class of two-parameter exponential family. The methodology is based on the implementation of a two-stage algorithm that induces a hybrid approach based on numerical methods for approximating the likelihood to a normal density using a Taylor linearization around the values of current parameters in an MCMC routine.
机译:本文旨在回顾一种新颖的贝叶斯方法,用于处理广义非线性模型中的推理和估计。这些模型包括一些统计方法学的主要技术,即广义线性模型和参数非线性回归。此外,该建议还扩展到系统处理未在模型中明确预测的变化的方法,方法是通过包含随机效应,并考虑了两参数指数族中离散参数的建模。该方法基于两阶段算法的实现,该算法基于基于数值方法的混合方法,使用MCMC例程中当前参数值周围的泰勒线性化近似近似于正常密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号