首页> 外文期刊>Communications in Statistics >Testing equality of generalized variances of k multivariate normal populations
【24h】

Testing equality of generalized variances of k multivariate normal populations

机译:测试k个多元正态总体的广义方差的相等性

获取原文
获取原文并翻译 | 示例

摘要

Generalized variance is a measure of dispersion of multivariate data. Comparison of dispersion of multivariate data is one of the favorite issues for multivariate quality control, generalized homogeneity of multidimensional scatter, etc. In this article, the problem of testing equality of generalized variances of k multivariate normal populations by using the Bartlett's modified likelihood ratio test (BMLRT) is proposed. Simulations to compare the Type I error rate and power of the BMLRT and the likelihood ratio test (LRT) methods are performed. These simulations show that the BMLRT method has a better chi-square approximation under the null hypothesis. Finally, a practical example is given.
机译:广义方差是对多元数据分散性的一种度量。多元数据散布的比较是多元质量控制,多维散布的广义同质性等最受欢迎的问题之一。在本文中,使用巴特利特修正似然比检验检验k个多元正态总体的广义方差是否相等。 (BMLRT)。进行了模拟,以比较BMLRT的I型错误率和功效以及似然比测试(LRT)方法。这些仿真表明,在原假设下,BMLRT方法具有更好的卡方近似。最后给出一个实际的例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号