首页> 外文期刊>Communications in numerical methods in engineering >Mixed variational methods for finite element analysis of geometrically non-linear, inelastic Bernoulli-Euler beams
【24h】

Mixed variational methods for finite element analysis of geometrically non-linear, inelastic Bernoulli-Euler beams

机译:非线性几何非弹性贝努利-欧拉梁有限元分析的混合变分方法

获取原文
获取原文并翻译 | 示例

摘要

Bernoulli-Euler beam theory has long been the standard for the analysis of reticulated structures. The need to accurately compute the non-linear (material and geometric) response of structures has renewed interest in the application of mixed variational approaches to this venerable beam theory. Recent contributions in the literature on mixed methods and the so-called (but quite related) non-linear flexibility methods have left open the question of what is the best approach to the analysis of beams. In this paper we present a consistent computational approach to one-, two-, and three-field variational formulations of non-linear Bernoulli-Euler beam theory, including the effects of non-linear geometry and inelasticity. We examine the question of superiority of methods through a set of benchmark problems with features typical of those encountered in the structural analysis of frames. We conclude that there is no clear winner among the various approaches, even though each has predictable computational strengths.
机译:长期以来,伯努利-欧拉梁理论一直是网状结构分析的标准。精确计算结构的非线性(材料和几何)响应的需求重新引起了人们对将混合变分方法应用到这种古老梁理论中的兴趣。文献中有关混合方法和所谓(但相当相关)的非线性柔度方法的最新贡献使人们对哪种最佳梁分析方法提出了疑问。在本文中,我们为非线性贝努利-欧拉梁理论的一场,两场和三场变分公式提供了一致的计算方法,其中包括非线性几何学和非弹性的影响。我们通过一组具有框架结构分析中遇到的典型特征的基准问题来检验方法的优越性问题。我们得出的结论是,尽管每种方法都有可预测的计算优势,但在各种方法中并没有明显的赢家。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号