首页> 外文期刊>Communications in numerical methods in engineering >Mathematical and numerical connections between polynomial extrapolation and Fade approximants: applications in structural mechanics
【24h】

Mathematical and numerical connections between polynomial extrapolation and Fade approximants: applications in structural mechanics

机译:多项式外推和Fade近似值之间的数学和数值联系:在结构力学中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the convergence acceleration of a sequence of vectors. This acceleration is achieved by using Minimal Polynomial Extrapolation Method (J Comput Appl Math 2000; 122: 149-165) or by the vectorial Pade approximants, that have been considered in the framework of high-order iterative algorithms (Commun Numer Methods Eng 1999; 15:701-708; Comput Methods Appl Mech Eng 2000; 190:1845-1858). It is established that, in some cases, these two procedures are mathematically equivalent. In the practice, such techniques are affected by numerical instabilities. So the numerical robustness of the two methods is discussed, on the basis of a test emanating from non-linear elastic thin shell analysis.
机译:本文涉及向量序列的收敛加速。通过使用最小多项式外推法(J Comput Appl Math 2000; 122:149-165)或矢量Pade近似值(在高阶迭代算法的框架中已考虑到这种加速度)可以实现这种加速(Commun Numer Methods Eng 1999; 1999)。 15:701-708; Comput Methods Appl Mech Eng 2000; 190:1845-1858)。可以确定的是,在某些情况下,这两个过程在数学上是等效的。在实践中,此类技术会受到数值不稳定性的影响。因此,基于非线性弹性薄壳分析的测试结果,讨论了这两种方法的数值鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号