首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Analytical and Rothe time-discretization method for a Boussinesq-type system over an uneven bottom
【24h】

Analytical and Rothe time-discretization method for a Boussinesq-type system over an uneven bottom

机译:在不平坦底部的Boussinesq型系统的分析与rothe时间离散化方法

获取原文
获取原文并翻译 | 示例

摘要

We study analytically and numerically a 2D version of a Boussinesq-type model considered by M. Chen (2003) to describe water wave propagation on the surface of a channel with an irregular moving topography. Following a semidiscrete horizontal line method (Rothe's method) implemented with FEniCS, we first discretize the temporal variable by using a finite-difference second-order Crank-Nicholson-type scheme, and then, at each time step, the spatial variables are discretized with an efficient Galerkin/Finite Element Method (FEM) using triangular-finite elements based on 2D piecewise-linear Lagrange interpolation. The numerical experiments presented are in accordance with the previous theoretical and experimental studies and show that the so-called Bragg resonant reflection emerges when surface waves modelled by the Boussinesq formulation studied interact with periodically varying bottoms. We also present some experiments to examine the interaction of incident waves with variable topographies such as the shoaling of a solitary wave on a slope and the generation of surface waves by moving topography. (c) 2021 Elsevier B.V. All rights reserved.
机译:我们在分析上和数量上研究了M. Chen(2003)考虑的BoussinesQ型模型的2D版本,以描述具有不规则移动地形的通道表面上的水波传播。遵循用纤维实现的半晶状态线路方法(ROTHE的方法),我们首先通过使用有限差分秒顺序曲柄-Nicholson型方案来离散时间变量,然后,在每个时间步骤中,空间变量被离散化一种高效的Galerkin /有限元方法(FEM)使用基于2D分段线性拉格朗日插值的三角形有限元。所提出的数值实验符合先前的理论和实验研究,并表明当由Boussinesq制剂建模的表面波进行与周期性不同的底部相互作用时所谓的布拉格共振反射出现。我们还展示了一些实验,以检查入射波与可变地形的相互作用,例如通过移动地形通过倾斜上的孤立波的俯冲和产生表面波的产生。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号