首页> 中文期刊> 《应用数学和力学:英文版》 >HIGHER ORDER BOUSSINESQ-TYPE EQUATIONS FOR WATER WAVES ON UNEVEN BOTTOM

HIGHER ORDER BOUSSINESQ-TYPE EQUATIONS FOR WATER WAVES ON UNEVEN BOTTOM

         

摘要

Higher order Boussinesq-type equations for wave propagation over variable bathymetry were derived. The time dependent free surface boundary conditions were used to compute the change of the free surface in time domain. The free surface velocities and the bottom velocities were connected by the exact solution of the Laplace equation. Taking the velocities on half relative water depth as the fundamental unknowns, terms relating to the gradient of the water depth were retained in the inverse series expansion of the exact solution, with which the problem was closed. With enhancements of the finite order Taylor expansion for the velocity field, the application range of the present model was extended to the slope bottom which is not so mild. For linear properties, some validation computations of linear shoaling and Booij's tests were carried out. The problems of wave-current interactions were also studied numerically to test the performance of the enhanced Boussinesq equations associated with the effect of currents. All these computational results confirm perfectly to the theoretical solution as well as other numerical solutions of the full potential problem available.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号