首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A new looped-functional for stability analysis of the linear impulsive system
【24h】

A new looped-functional for stability analysis of the linear impulsive system

机译:一种用于线性脉冲系统稳定性分析的新的循环函数

获取原文
获取原文并翻译 | 示例

摘要

A more advanced two-sided looped-functional is adopted for the stability analysis of the linear impulsive system. Compared with existing methods based on functionals relying on Lyapunov's theorem, the positivity requirement of the functional is relaxed by the looped-functional. The other highlight is the full utilization of information on both the intervals x(t(k)) to x(t) and x(t) to x(t(k+1)) by the two-sided functional. Stability conditions in the form of linear matrix inequality (LMI) derived on the ranged dwell-time are discrete-time stability results, which are expressed in continuous-time. Then, the stability result is further extended to the impulsive system with polytopic uncertainties. Finally, two numerical examples are given to illustrate the effectiveness and advantage of the proposed results. (C) 2019 Elsevier B.V. All rights reserved.
机译:线性脉冲系统的稳定性分析采用了更先进的双面回路功能。与基于李雅普诺夫定理的基于功能的现有方法相比,通过循环功能可以放宽对功能的积极性要求。另一个亮点是双向函数充分利用了x(t(k))到x(t)和x(t)到x(t(k + 1))的信息。从远程停留时间得出的线性矩阵不等式(LMI)形式的稳定性条件是离散时间稳定性结果,以连续时间表示。然后,将稳定性结果进一步推广到具有多面体不确定性的脉冲系统。最后,通过两个数值例子说明了所提出结果的有效性和优势。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号