首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Effects of dynamical time scale mismatch on time series analysis using event intervals
【24h】

Effects of dynamical time scale mismatch on time series analysis using event intervals

机译:动态时标不匹配对使用事件间隔的时间序列分析的影响

获取原文
获取原文并翻译 | 示例

摘要

The use of a sequence of inter-event time intervals as a proxy for time series measurements in state space reconstructions, used to compute correlation dimensions, is explored. In addition to testing the validity of the method in general, the effects of using time intervals that are much longer than the characteristic time scale of the system dynamics are examined. Two model systems for which copious information is available are employed: empirically measured data produced using a Chua circuit, and computed numerical values produced using a nonlinear model of the reproductive endocrine system. For time intervals well-matched to the dynamical time scale, the result of state space reconstructions using these time intervals is successful for both the Chua circuit data and the endocrine modeling results. Using longer time intervals, however, results in computed correlation dimensions that are considerably higher than the actual correlation dimensions of these systems. Similar results are also found using very long delay times in a standard time series analysis of the variables in both systems. Using parameter variations to induce changes in the correlation dimension of the endocrine model system, it is shown that these changes are similar in both the actual correlation dimension and the higher correlation dimension computed using very long time intervals. It is argued that this has important implications for studies in which the only available data consists of event intervals, as illustrated by comparisons between the endocrine modeling results presented here and empirical studies using menstrual cycle lengths as events intervals. (c) 2019 Elsevier B.V. All rights reserved.
机译:探索了使用事件间时间间隔序列作为状态空间重构中时间序列测量的代理,用于计算相关维。除了通常测试该方法的有效性外,还要检查使用比系统动力学的特征时间标度长得多的时间间隔的效果。使用两个模型系统可获得大量信息:使用Chua电路产生的经验测量数据,以及使用生殖内分泌系统的非线性模型产生的计算数值。对于与动态时标非常匹配的时间间隔,对于Chua电路数据和内分泌建模结果,使用这些时间间隔进行状态空间重构的结果都是成功的。但是,使用较长的时间间隔会导致计算出的相关维数大大高于这些系统的实际相关维数。在两个系统中变量的标准时间序列分析中,使用很长的延迟时间也会发现类似的结果。使用参数变化来诱发内分泌模型系统相关维度的变化,结果表明,这些变化在实际相关维度和使用非常长的时间间隔计算出的较高相关维度上都是相似的。有人认为,这对于其中唯一可用数据由事件间隔组成的研究具有重要意义,如此处介绍的内分泌建模结果与以月经周期长度作为事件间隔的实证研究之间的比较所说明的那样。 (c)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号