首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Perturbation to Lie symmetry and adiabatic invariants for Birkhoffian systems on time scales
【24h】

Perturbation to Lie symmetry and adiabatic invariants for Birkhoffian systems on time scales

机译:时标上Birkhoff系统的Lie对称性和绝热不变量的摄动

获取原文
获取原文并翻译 | 示例

摘要

Lie symmetry of a dynamical system is the invariance of differential equations of motion under the infinitesimal transformations of a group and it can lead to invariants under certain conditions. Firstly, the Lie symmetry of Birkhoffian system on time scales is studied when there is no disturbance, the determining equations of Lie symmetry are established, and the exact invariants led by the Lie symmetry are given. Secondly, the perturbation to Lie symmetry and adiabatic invariants are studied when the system is subjected to small disturbance, and the determining equations of Lie symmetry of the disturbed system are established, and the condition of the Lie symmetry leading to adiabatic invariants and the form of adiabatic invariants are given. As an application of the results, we give the Lie symmetry theorems of Hamiltonian system on time scales. The results contain the exact invariants and adiabatic invariants of Lie symmetry for the classical continuous systems and discrete systems as their special cases. Two examples are given to illustrate the application of the results. (C) 2019 Elsevier B.V. All rights reserved.
机译:动力系统的Lie对称性是在组的无穷小变换下运动微分方程的不变性,在某些条件下它可能导致不变性。首先研究了无扰动时伯克霍夫系统在时间尺度上的李对称性,建立了李对称性的确定方程,给出了由李对称性导致的精确不变量。其次,研究了系统受到小扰动时对Lie对称性和绝热不变量的摄动,建立了扰动系统的Lie对称性的确定方程,建立了导致绝热不变量的Lie对称性的条件和形式。给出了绝热不变量。作为结果的应用,我们在时标上给出了哈密顿系统的李对称性定理。结果包含经典连续系统和离散系统的Lie对称性的精确不变量和绝热不变量作为特殊情况。给出两个例子来说明结果的应用。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号