首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Universal theory of dynamical chaos in nonlinear dissipative systems of differential equations
【24h】

Universal theory of dynamical chaos in nonlinear dissipative systems of differential equations

机译:非线性耗散微分方程系统动力混沌的通用理论。

获取原文
获取原文并翻译 | 示例

摘要

A new universal theory of dynamical chaos in nonlinear dissipative systems of differential equations including ordinary and partial, autonomous and non-autonomous differential equations and differential equations with delay arguments is presented in this paper. Four corner-stones lie in the foundation of this theory: the Feigenbaum's theory of period doubling bifurcations in one-dimensional mappings, the Sharkovskii's theory of bifurcations of cycles of an arbitrary period up to the cycle of period three in one-dimensional mappings, the Magnitskii's theory of rotor type singular points of two-dimensional non-autonomous systems of differential equations as a bridge between one-dimensional mappings and differential equations and the theory of homoclinic cascade of bifurcations of stable cycles in nonlinear differential equations. All propositions of the theory are strictly proved and illustrated by numerous analytical and computing examples.
机译:提出了一种新的泛型非线性耗散微分方程系统动力学混沌理论,该方程包括普通和部分,自治和非自治微分方程以及带时滞参数的微分方程。该理论的基础是四个基石:一维映射中费根鲍姆的周期加倍分支理论,一维映射中第三个周期的周期的夏尔科夫斯基的任意周期分支的理论, Magnitskii的二维非自治微分方程系统的转子类型奇异点理论(作为一维映射和微分方程之间的桥梁)和非线性微分方程中稳定周期分叉的同宿级联理论。该理论的所有命题都经过大量分析和计算实例的严格证明和说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号