首页> 外文学位 >Nonlinear order reduction and control of dissipative partial differential equation systems: Methods and applications to transport-reaction processes and fluid flows.
【24h】

Nonlinear order reduction and control of dissipative partial differential equation systems: Methods and applications to transport-reaction processes and fluid flows.

机译:耗散偏微分方程系统的非线性阶数减少和控制:运移反应过程和流体流动的方法和应用。

获取原文
获取原文并翻译 | 示例

摘要

The development of general and practical control algorithms for dissipative nonlinear partial differential equation (PDE) systems that mathematically describe fluid flow and transport-reaction processes is a fundamental problem with a variety of industrially important applications. Examples range from the feedback control of turbulence for drag reduction, to suppression of fluid mechanical instabilities in coating processes and suppression of waves exhibited by falling liquid films, and from the suppression of thermal dislocations in high-purity crystals during the Czochralski crystallization to the feedback control of chemical vapor deposition and etching of thin films for microelectronics manufacturing to achieve spatially uniform thickness.; Traditional approaches for controlling chemical distributed processes are based on the simplifying assumption that the control variables are spatially uniform; yet, many industrial control problems involve regulation of variables which are distributed in space and cannot be effectively solved with these approaches. These limitations together with the recent advances in the development of fundamental mathematical models that accurately predict the behavior of transport-reaction and fluid flow processes, provide a strong motivation for developing a general framework for nonlinear controller design based on detailed models, thus exploiting the ability of a model to predict the behavior of a process and the fundamental knowledge of the underlying physico-chemical phenomena that the model contains. The key difficulty in developing model-based control methods for transport-reaction and fluid flow processes lies in the “infinite-dimensional” nature of the distributed process models, which prohibits their direct use for control system design.; Motivated by the above, this doctoral thesis presents a general and practical methodology for the nonlinear order reduction and control of a general class of process models, described by dissipative partial differential equation systems, which arise in the modeling of diffusion-convection-reaction processes with fixed and time-varying spatial domains and fluid dynamic systems. The methodology proposes a combination of Galerkin's method with approximate inertial manifolds to derive low-dimensional approximations of the distributed process model, which are employed for the selection of the control configuration and the synthesis of high-performance nonlinear feedback controllers using geometric control methods and Lyapunov techniques. A rigorous analysis of the closed-loop system (distributed process model and controller is performed to derive precise conditions which guarantee that the desired stability and performance properties are achieved in the presence of uncertainty in the values of the parameters of the process model.; The developed methodology is applied, via computer simulations, to industrially important transport-reaction processes such as the Czochralski crystal growth, plasma-enhanced chemical vapor deposition and plasma etching and towards the suppression of instabilities exhibited by falling and shallow liquid films, described by the Kuramoto-Sivashinsky and Korteweg-de-Vries Burgers equations respectively.
机译:耗散的非线性偏微分方程(PDE)系统的通用和实用控制算法的开发,用数学方法描述了流体的流动和输运-反应过程,是各种工业上重要应用的基本问题。示例包括从减小湍流的反馈控制到减小阻力,抑制涂覆过程中流体机械不稳定性和抑制液膜掉落所产生的波动,以及抑制切克劳斯基结晶过程中高纯度晶体中的热位错到反馈。控制化学气相沉积和微电子制造薄膜的蚀刻,以实现空间均匀的厚度。传统的控制化学分布过程的方法是基于简化的假设,即控制变量在空间上是统一的。然而,许多工业控制问题涉及对变量的调节,这些变量在空间中分布并且不能用这些方法有效地解决。这些局限性以及能够准确预测运输反应和流体流动过程行为的基础数学模型开发的最新进展,为基于详细模型开发非线性控制器设计的通用框架提供了强大的动力,从而充分利用了这种能力。模型以预测过程的行为以及该模型包含的潜在物理化学现象的基础知识。为运输反应和流体流动过程开发基于模型的控制方法的主要困难在于分布式过程模型的“无限维”性质,这限制了它们直接用于控制系统设计。出于以上原因,本博士论文提出了一种通用的实用方法,用于非线性常规过程模型的非线性降阶和控制,该过程模型由耗散偏微分方程系统描述,该模型在具有扩散对流反应过程的模型中产生。固定且随时间变化的空间域和流体动力系统。该方法提出了Galerkin方法与近似惯性流形的组合,以得出分布式过程模型的低维近似,用于控制配置的选择以及使用几何控制方法和Lyapunov的高性能非线性反馈控制器的合成技术。对闭环系统(分布式过程模型和控制器)进行严格分析,以得出精确的条件,这些条件可确保在过程模型的参数值存在不确定性的情况下实现所需的稳定性和性能。通过计算机模拟,已开发的方法学被用于工业上重要的传输反应过程,例如切克劳斯基晶体生长,等离子体增强的化学气相沉积和等离子体蚀刻,并被用于抑制由落下和浅层液膜所表现出的不稳定性, -Sivashinsky和Korteweg-de-Vries Burgers方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号