首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Modeling of chaotic motion of gyrostats in resistant environment on the base of dynamical systems with strange attractors
【24h】

Modeling of chaotic motion of gyrostats in resistant environment on the base of dynamical systems with strange attractors

机译:基于具有奇异吸引子的动力学系统在抵抗环境中陀螺仪混沌运动的建模

获取原文
获取原文并翻译 | 示例

摘要

A chaotic motion of gyrostats in resistant environment is considered with the help of well known dynamical systems with strange attractors: Lorenz, Rossler, Newton-Leipnik and Sprott systems. Links between mathematical models of gyrostats and dynamical systems with strange attractors are established. Power spectrum of fast Fourier transformation, gyrostat longitudinal axis vector hodograph and Lyapunov exponents are find. These numerical techniques show chaotic behavior of motion corresponding to strange attractor in angular velocities phase space. Cases for perturbed gyrostat motion with variable periodical inertia moments and with periodical internal rotor relative angular moment are considered; for some cases Poincare sections areobtained.
机译:陀螺仪在抵抗性环境中的混沌运动是借助于具有奇怪吸引子的众所周知的动力学系统来考虑的:洛伦兹,罗斯勒,牛顿-莱普尼克和斯普罗特系统。建立了陀螺仪的数学模型和具有吸引子的动力学系统之间的链接。找到了快速傅里叶变换的功率谱,陀螺仪纵轴矢量全息图和李雅普诺夫指数。这些数值技术显示了在角速度相空间中对应于奇异吸引子的运动的混沌行为。考虑了具有可变周期惯性矩和周期内转子相对角矩的扰动陀螺仪运动的情况;在某些情况下,可获得Poincare切片。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号