首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Two 3×3 discrete matrix spectral problems and associated Liouville integrable lattice soliton equations
【24h】

Two 3×3 discrete matrix spectral problems and associated Liouville integrable lattice soliton equations

机译:两个3×3离散矩阵谱问题和相关的Liouville可积格孤子方程

获取原文
获取原文并翻译 | 示例

摘要

Two 3×3 discrete matrix spectral problems are introduced and the corresponding lattice soliton equations are derived. By means of the discrete trace identity the Hamiltonian structures of the resulting equations are constructed. Liouville integrability of the discrete Hamiltonian systems is proved.
机译:介绍了两个3×3离散矩阵谱问题,并推导了相应的晶格孤子方程。借助于离散的轨迹标识,构造了所得方程式的哈密顿结构。证明了离散哈密顿系统的Liouville可积性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号