首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Solitary wave solutions of the high-order KdV models for bi-directional water waves
【24h】

Solitary wave solutions of the high-order KdV models for bi-directional water waves

机译:双向水波高阶KdV模型的孤波解

获取原文
获取原文并翻译 | 示例

摘要

An approach, which allows us to construct specific closed-form solitary wave solutions for the KdV-like water-wave models obtained through the Boussinesq perturbation expansion for the two-dimensional water wave problem in the limit of long wavelength/small amplitude waves, is developed. The models are relevant to the case of the bi-directional waves with the amplitude of the left-moving wave of O(∈) (∈ is the amplitude parameter) as compared with that of the right-moving wave. We show that, in such a case, the Boussinesq system can be decomposed into a system of coupled equations for the right- and left-moving waves in which, to any order of the expansion, one of the equations is dependent only on the (main) right-wave elevation and takes the form of the high-order KdV equation with arbitrary coefficients whereas the second equation includes both elevations. Then the explicit solitary wave solutions constructed via our approach may be treated as the exact solutions of the infinite-order perturbed KdV equations for the right-moving wave with the properly specified high-order coefficients. Such solutions include, in a sense, contributions of all orders of the asymptotic expansion and therefore may be considered to a certain degree as modelling the solutions of the original water wave problem under proper initial conditions. Those solitary waves, although stemming from the KdV solitary waves, possess features found neither in the KdV solitons nor in the solutions of the first order perturbed KdV equations.
机译:一种方法,它允许我们为通过在长波长/小振幅波限制下的二维水波问题通过Boussinesq摄动展开而获得的KdV类水波模型构造特定的封闭形式孤立波解决方案,该方法是发达。该模型与双向波的情况有关,其中双向波的振幅为O(ε)的左移波(ε为振幅参数)。我们表明,在这种情况下,Boussinesq系统可以分解为左右移动波的耦合方程组,其中在任意扩展阶上,方程组中的一个仅取决于( main)右波高程,采用具有任意系数的高阶KdV方程的形式,而第二个方程同时包含两个高程。然后,可以将通过我们的方法构造的显式孤立波解视为具有正确指定的高阶系数的右移波的无序扰动KdV方程的精确解。从某种意义上说,这样的解决方案包括了渐进扩展的所有阶次的贡献,因此可以在一定程度上考虑在适当的初始条件下对原始水波问题的解决方案进行建模。那些孤立波,尽管源自KdV孤立波,但不具有在KdV孤子或一阶扰动KdV方程的解中找不到的特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号